

Future Linear Colliders

Frank Tecker – CERN

- Physics motivation
- Generic Linear Collider Layout
- ILC (International Linear Collider)
- CLIC (Compact Linear Collider)
- CTF3 (CLIC Test Facility)
- Conclusion

- History:
 - Energy constantly increasing with time
 - Hadron Collider at the energy frontier
 - Lepton Collider for precision physics
- LHC coming online very soon
- Consensus to build Lin. Collider with E_{cm} > 500 GeV to complement LHC physics (*European strategy for particle physics* by CERN Council)

Lepton vs. Hadron Collisions

LHC: $H \rightarrow ZZ \rightarrow 4\mu$

• Hadron Collider (p, ions):

- Composite nature of protons
- Can only use p_t conservation
- Huge QCD background

• Lepton Collider:

- Elementary particles
- Well defined initial state
- Beam polarization
- produces particles democratically
- Momentum conservation eases decay product analysis

TeV e+e- physics

- Higgs physics
 - Tevatron/LHC should discover Higgs (or something else)
 - LC explore its properties in detail
- Supersymmetry
 - LC will complement the LHC particle spectrum
- Extra spatial dimensions
- New strong interactions
 - => a lot of new territory to discover beyond the standard model
- "Physics at the CLIC Multi-TeV Linear Collider" CERN-2004-005
- "ILC Reference Design Report Vol.2 Physics at the ILC" www.linearcollider.org/rdr

- LEP (Large Electron Positron collider) was installed in LHC tunnel
- e+ e- circular collider (27 km) with E_{cm} =200 GeV
- Problem for any ring:
 Synchrotron radiation
- Emitted power: scales with E^4 !! and $1/m_0^3$ (much less for heavy particles)
- This energy loss must be replaced by the RF system !!
- particles lost 3% of their energy each turn!

- Solution: LINEAR COLLIDER
- avoid synchrotron radiation
- no bending magnets, huge amount of cavities and RF

the same beams for collision

Storage rings:

- accelerate + collide every turn
- 're-use' RF +'re-use' particles

$\bullet \Rightarrow$ efficient

Linear Collider:

- one-pass acceleration + collision
 ⇒ need
- high gradient
- small beam size

to reach high event rate (Luminosity)

- Acceleration efficiency η
- Generation and preservation of small emittance ε
- Extremely small beam spot at collision point

damping rings, alignment, stability, wake-fields

beam delivery system, stability

Frank Tecker

Generic Linear Collider

First Linear Collider: SLC

SLC – Stanford Linear Collider

Built to study the Z⁰ and demonstrate linear collider feasibility

Energy = 92 GeV Luminosity = 2e30

Has all the features of a 2nd gen. LC except both e+ and e- used the same linac

A 10% prototype!

T.Raubenheimer

Frank Tecker

Future Linear Colliders – Summer Student Lecture

29.7.2009

CLIC

ILC (International Linear Collider)

- Technology decision Aug 2004
- Superconducting technology
- 1.3 GHz RF frequency
- ~31 MV/m accelerating gradient
- 500 GeV centre-of-mass energy
- upgrade to 1 TeV possible

- (Compact Linear Collider)
 - normalconducting technology
 - multi-TeV energy range (nom. 3 TeV)

Frank Tecker

Parameter comparison

	SLC	TESLA	ILC	J/NLC	CLIC
Technology	NC	Supercond.	Supercond.	NC	NC
Gradient [MeV/m]	20	25	31.5	50	100
CMS Energy E [GeV]	92	500-800	500-1000	500-1000	500-3000
RF frequency f [GHz]	2.8	1.3	1.3	11.4	12.0
Luminosity $L [10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	0.003	34	20	20	21
Beam power P _{beam} [MW]	0.035	11.3	10.8	6.9	5
Grid power <i>P_{AC}</i> [MW]		140	230	195	130
Bunch length σ_z^* [mm]	~1	0.3	0.3	0.11	0.03
Vert. emittance γε _y [10 ⁻⁸ m]	300	3	4	4	2.5
Vert. beta function β_y^* [mm]	~1.5	0.4	0.4	0.11	0.1
Vert. beam size σ_y^* [nm]	650	5	5.7	3	2.3

Parameters (except SLC) at 500 GeV

Frank Tecker

ILC Global Design Effort

Frank Tecker

Future Linear Colliders – Summer Student Lecture

29.7.2009

Schematic Layout of the 500 GeV Machine

~4.45 Km

- Two 250 Gev linacs arranged to produce nearly head on e+e- collisions
 Single IR with 14 mrad crossing angle
- Centralized injector
 - Circular 6.7 km damping rings
 - Undulator-based positron source
- Dual tunnel configuration for safety and availability

11.3 Km + ~1.25 Km

11.3 Km

~1.33 Km

~1.33 Km

ILC Super-conducting technology

The core technology for the ILC is 1.3GHz superconducting RF cavity intensely developed in the TESLA collaboration, and recommended for the ILC by the ITRP on 2004 August. The cavities are installed in a long cryostat cooled at 2K, and operated at gradient 31.5MV/m.

CLIC

ILC Main Linac RF Unit

560 RF units each one composed of:

- 1 Bouncer type modulator
- 1 Multibeam klystron (10 MW, 1.6 ms)
- 3 Cryostats (9+8+9 = 26 cavities)
- 1 Quadrupole at the center

Total of 1680 cryomodules and 14 560 SC RF cavities

Frank Tecker

SC Technology

- In the past, SC gradient typically 5 MV/m and expensive cryogenic equipment
- TESLA development: new material specs, new cleaning and fabrication techniques, new processing techniques
- Significant cost reduction
- Gradient substantially increased

- The strate of th
- Electropolishing technique has reached ~35 MV/m in 9-cell cavities
- Still requires essential work
- 31.5 MV/m ILC baseline

Chemical polish

Electropolishing

Achieved accelerating gradients...

- Recent progress by R&D programme to systematically understand and set procedures for the production process
- \bullet goal to reach a 50% yield at 35 MV/m by the end of 2010
- already approaching that goal
- 90% yield foreseen later

R&D of SCRF cavities

Frank Tecker

Future Linear Colliders – Summer Student Lecture

29.7.2009

- Superconducting cavities fundamentally limited in gradient by critical magnetic field => become normal conducting above
- Normal conducting cavities are limited in pulse length by "Pulsed surface heating" => can lead to fatigue
- Normal conducting cavities:
 higher gradient with shorter RF pulse length
- Superconducting cavities: lower gradient with long RF pulse

Accelerating fields in Linear Colliders

 Develop technology for linear e+/e- collider with the requirements:

- ch
- E_{cm} should cover range from ILC to LHC maximum reach and beyond $\Rightarrow E_{cm} = 0.5 - 3$ TeV
- Luminosity > few 10^{34} cm⁻² with acceptable background and energy spread
 - E_{cm} and L to be reviewed once LHC results are available
- Design compatible with maximum length ~ 50 km
- Affordable
- Total power consumption < 500 MW

• Present goal: Demonstrate all key feasibility issues and document in a CDR by 2010 (possibly TDR by 2016)

World-wide CLIC&CTF3 Collaboration

+

X

Aarhus University (Denmark) Ankara University (Turkey) Argonne National Laboratory (USA) Athens University (Greece) BINP (Russia) CERN CIEMAT (Spain) Cockcroft Institute (UK) Gazi Universities (Turkey)

33 Institutes involving 21 funding agencies and 18 countries

Helsinki Institute of Physics (Finland) IAP (Russia) IAP NASU (Ukraine) INFN / LNF (Italy) Instituto de Fisica Corpuscular (Spain) IRFU / Saclay (France) Jefferson Lab (USA) John Adams Institute (UK) JINR (Russia) Karlsruhre University (Germany) KEK (Japan) LAL / Orsay (France) LAPP / ESIA (France) NCP (Pakistan) North-West. Univ. Illinois (USA) Oslo University (Norway) Patras University (Greece) Polytech. University of Catalonia (Spain) PSI (Switzerland) RAL (UK) RRCAT / Indore (India) SLAC (USA) Thrace University (Greece) Uppsala University (Sweden)

High acceleration gradient

- "Compact" collider total length < 50 km
- Normal conducting acceleration structures
- High acceleration frequency (12 GHz)
- Two-Beam Acceleration Scheme
 - High charge Drive Beam (low energy)
 - Low charge Main Beam (high collision energy)
 - \Rightarrow Simple tunnel, no active elements
 - \Rightarrow Modular, easy energy upgrade in stages

Drive beam - 101 A, 240 ns from 2.4 GeV to 240 MeV

Frank Tecker

CLIC Layout at various energies if

Frank Tecker

Future Linear Colliders – Summer Student Lecture

29.7.2009

Center-of-mass energy	3 TeV		
Peak Luminosity	6·10 ³⁴ cm ⁻² s ⁻¹		
Peak luminosity (in 1% of energy)	2·10 ³⁴ cm ⁻² s ⁻¹		
Repetition rate	50 Hz		
Loaded accelerating gradient	100 MV/m		
Main linac RF frequency	12 GHz		
Overall two-linac length	41.7 km		
Bunch charge	3.7·10 ⁹		
Beam pulse length	156 ns		
Average current in pulse	1 A		
Hor./vert. normalized emittance	660 / 20 nm rad		
Hor./vert. IP beam size before pinch	45 / ~1 nm		
Total site length	48.4 km		
Total power consumption	390 MW		

Provisional values

CLIC scheme

- Very high gradients possible with NC accelerating structures at high RF frequencies ($30 \text{ GHz} \rightarrow 12 \text{ GHz}$) and short RF pulses (~100 ns)
- Extract required high RF power from an intense e- "drive beam"
- Generate efficiently long beam pulse and compress it (in power + frequency)

Drive beam generation basics

Frequency multiplication

CLIC

double repetition frequency and current

- parts of bunch train delayed in loop
- RF deflector combines the bunches

RF injection in combiner ring

<u>CTF3 - PRELIMINARY PHASE 2001/2002</u>

Successful low-charge demonstration of electron pulse combination and bunch frequency multiplication by up to factor 5

Streak camera image of beam time structure evolution

1st turn

Frank Tecker

RF injection in combiner ring

Streak camera images of the beam, showing the bunch combination process

A first ring combination test was performed in 2002, *at low current and short pulse*, in the CERN Electron-Positron Accumulator (EPA), properly modified

Lemmings Drive Beam

Frank Tecker

Future Linear Colliders – Summer Student Lecture

29.7.2009

İİL

CLIC Drive Beam generation

Frank Tecker

Future Linear Colliders – Summer Student Lecture

29.7.2009

- demonstrate Drive Beam generation (fully loaded acceleration, bunch frequency multiplication 8x)
- Test CLIC accelerating structures
- Test power production structures (PETS)

Frank Tecker

Future Linear Colliders – Summer Student Lecture

29.7.2009

• efficient power transfer from RF to the beam needed

"Standard" situation:

- small beam loading
- power at structure exit lost in load

- "Efficient" situation:
- high beam current
- high beam loading
- no power flows into load

•
$$V_{ACC} \approx 1/2 V_{unloaded}$$

CTF3 linac acceleration structures

Dipole modes suppressed by slotted iris damping (first dipole's Q factor < 20) and HOM frequency detuning

- 3 GHz $2\pi/3$ traveling wave structure
- constant aperture
- slotted-iris damping + detuning with nose cones

- Measured RF-to-beam efficiency 95.3%
- Theory 96%(~ 4 % ohmic losses)
- \bullet up to 4 A 1.4 µs beam pulse stably accelerated

CTF3 Delay Loop

Frank Tecker

Future Linear Colliders – Summer Student Lecture

29.7.2009

Delay Loop – full recombination …

• 3.3 A after chicane = < 6 A after combination (satellites)

CLIC

CTF3 combiner ring

Frank Tecker

CTF3 Combiner Ring Status

First recombination at higher current achieved

CLIC

Power extraction structure PETS - if

- must extract efficiently several 100 MW power from high current drive beam
- periodically corrugated structure with low impedance (big a/λ)
- ON/OFF mechanism

PETS ON/OFF mechanism

Reconstructed from GDFIDL data

Frank Tecker

Field development in a PETS-if

• The induced fields travel along the PETS structure and build up resonantly (here only dipole fields in animation)

- Bunches induce field in the cavities which perturbs later bunches
- Fields can build up resonantly
- Bunches passing off-centre excite transverse higher order modes (HOM)
- Later bunches are kicked transversely
- \Rightarrow multi- and single-bunch beam break-up (MBBU, SBBU)

Emittance growth!!!

Long-range wakefields minimised by structure design

Accelerating structure developments

- Structures built from discs
- Each cell damped by 4 radial WGs
- terminated by SiC RF loads
- HOM enter WG
- Long-range wakefields efficiently damped

Structure breakdown and damages...

• Cu structures limited to surface fields of 300-400 MV/m

Severe surface damage noticed

Microscopic image of damaged iris

Damaged iris - longitudinal cut

• Two-pronged approach:

CLIC

- modify RF design geometry
 => lower Es/Ea ~ 2
- investigate new iris material
- Still R&D required

Achieved accelerating fields in CTF2...

High gradient tests of new structures with molybdenum irises reached 190 MV/m peak accelerating gradient without any damage well above the nominal CLIC accelerating field of 100 MV/m but with RF pulse length of 16 ns only (nominal 150 ns)

c l l c

30 cell clamped tungsten-iris structure

Recent SLAC High-Power test results – 11.4 GHz

CLIC and **ILC** timeline

From B. Barish, ILC Global Design Effort director

- World-wide Consensus for a Lepton Linear Collider as the next HEP facility to complement LHC at the energy frontier
- Presently two Linear Collider Projects:
 - International Linear Collider based on Super-Conducting RF technology with extensive R&D in world-wide collaboration:
 - First phase at 500 GeV beam collision energy, upgrade to 1 TeV
 - in Technical Design phase
 - CLIC technology only possible scheme to extend collider beam energy into Multi-TeV energy range
 - Very promising results but not mature yet, requires challenging R&D
 - CLIC-related key issues addressed in CTF3 by 2010
- Possible decision from 2010-12 based on LHC results
- Looking forward to a successful LHC operation

Documentation

- General documentation about the CLIC study:
 - CLIC scheme description: http://preprints.cern.ch/yellowrep/2000/2000-008/p1.pdf
- Recent Bulletin article: <u>http://cdsweb.cern.ch/journal/article?issue=28/2009&name=CERNBulletin&category=News%20Articles&number=1</u>
- CLIC Physics
- CLIC Test Facility: CTF3
 - CLIC technological challenges (CERN Academic Training) http://indico.cern.ch/conferenceDisplay.py?confId=a057972
- CLIC Workshop 2008 (most actual information)
- EDMS <u>http://edms.cern.ch/nav/CERN-0000060014</u>
- CLIC ACE (advisory committee meeting) <u>http://indico.cern.ch/conferenceDisplay.py?confId=58072</u>
- CLIC meeting (parameter table)
- CLIC parameter note
- CLIC notes

http://cern.ch/clic-meeting

http://cern.ch/CLIC08

http://cern.ch/CLIC-Study/

http://cern.ch/tecker/par2007.pdf

http://cdsweb.cern.ch/collection/CLIC%20Notes

http://clicphysics.web.cern.ch/CLICphysics/

http://ctf3.home.cern.ch/ctf3/CTFindex.htm