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Expression Quantitative Trait Loci - eQTL

Transcript abudance is regulated by polymorphisms in the
regulatory elements

Statistical methods can be used to discover which
polymorphism affects the expression levels of a gene

This mapping sometimes is obfuscated by non-genetic factors
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Single Nucleotide Polymorphisms

A single nucleotide polymorphism is a variation in the DNA
sequence that affects only one nucleotide.

They make up about 90% of all human genetic variation

They capture 84% of the total genetic variation in gene
expression
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The Hapmap dataset

a multi-country effort to identify and catalog genetic
similarities and differences in human beings

3.1 million human single nucleotide polymorphisms have been
genotyped

270 individuals from 4 geographically diverse populations
(Hapmap phase II)
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Project GENEVAR - GENe Expression VARiation

Gene expression data from EBV-transformed lymphoblastoid
cell lines (Stranger et al., Nature Genetics 2007)

270 individuals from Hapmap phase I and II

47,293 gene probes
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Confounding factors

Several studies have shown that non-genetic factors can obfuscate
associations:

Known Factors: age, sex, ethnicity, ...

Batch effects: optical effects

Unknown factors
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Modelling non-genetic factors

Our model is inspired by Stegle et al, Lecture notes in
Computer Science (2006).

We model non-genetic factors as unobserved latent variables.

Gene expression levels are described as a linear function of
SNP data and non-genetic factors

Y = SV + XW + µ1> + ε
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dual Probabilistic Principal Component Analysis

We learn the parameters by:

Marginalizing W,V, µ, ε

Maximizing the log-likelihood with respect to the latent
variables (X)

For a particular choice of priors over W and V this approach is
equivalent to probabilistic Principal Component Analysis
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dual Probabilistic Principal Component Analysis

We put Gaussian priors over W, V and µ:

P(W) =
D∏
i=1

N(wi|0, αw I)

P(V) =
D∏
i=1

N(vi|0, αv I)

P(µ) = N(µ|0, αµI)
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dual Probabilistic Principal Component Analysis

The likelihood of Y can be then written as

P(Y|W,X,S, µ) =
D∏
j=1

N(yj|Wxj + Vsj + µ, σ2I)

Marginalizing W,V, µ, ε we obtain the marginal likelihood

P(Y|X) =
D∏
j=1

N(yj |0, αwXX
> + αvSS

> + αµ + σ2I)
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eQTL scan using data from Hapmap and GENEVAR

At each locus we compute the log-odds score:

Li = log10

{∏
n

P(Ym|sn,j , θi ,n)

P(Ym|θbkg )

}
(1)

The significance of an association is evaluated via permutation
testing.
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Traditional eQTL scan



eQTL mapping
Dataset

The model
Experiments
Conclusions

eQTL scan accounting for non-genetic factors
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Conclusions

We presented a model that explicitly accounts for non-genetic
factors

Using this model we can detect an higher number of
significant associations

Many extensions are possible (future work)
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