Using sequential Monte Carlo approaches as a design tool in synthetic

Chris Barnes, Xia Sheng, Michael Stumpf

Centre for Bioinformatics & Institute of Mathematical Sciences & Centre for Integrative Systems Biology at Imperial College London

30th March 2010

Synthetic genetic circuits

• Understand how organisms function

Synthetic genetic circuits

- Understand how organisms function
- Produce drugs more effectively eg anti malarials
- Metabolize toxic chemicals
- Modify bacteria to hunt and kill tumors
- Stem cell production

Synthetic genetic circuits

- Understand how organisms function
- Produce drugs more effectively eg anti malarials
- Metabolize toxic chemicals
- Modify bacteria to hunt and kill tumors
- Stem cell production

Challenges

- Tuning of co-operativity, repression strengths, decay rates
- Genetic components relatively unreliable with large variations in parameter values
- Interactions and cross-talk at the systems level
- Asynchronous timing

Synthetic genetic circuits

- Understand how organisms function
- Produce drugs more effectively eg anti malarials
- Metabolize toxic chemicals
- Modify bacteria to hunt and kill tumors
- Stem cell production

Challenges

- Tuning of co-operativity, repression strengths, decay rates
- Genetic components relatively unreliable with large variations in parameter values
- Interactions and cross-talk at the systems level
- Asynchronous timing

How do we design genetic circuits to perform these functions?

Synthetic biology vs Systems biology

Synthetic biology vs Systems biology

System design as an inference problem

Which configuration of components will give an output O given an input I? Which model best describes the observed data O given conditions I?

Synthetic biology vs Systems biology

System design as an inference problem

Which configuration of components will give an output O given an input I? Which model best describes the observed data O given conditions I?

Advantages of using Bayesian framework for system design

- Credible limits on parameter values vs optimum values
- Model selection through Bayes factors
- Sensitivity from posterior distribution
- Incorporate prior biological knowledge into system design

Bayesian Inference					
	Posterior $p(\theta X)$	$\propto \propto$	Likelihood $p(X heta)$	×	prior p(heta)

Approximate inference methods

Sample from approximate posterior:

 $p(\theta | \Delta(X_s(\theta), X) \leq \epsilon).$

where $\Delta(X_s,X)$ is distance between simulation and data. It can be shown, as $\epsilon \to 0$

 $p(\theta|\Delta(X_s(\theta), X) \leq \epsilon) \rightarrow p(\theta|X)$

ABC flavours

- ABC rejection Pritchard et al. Mol. Biol. Evol. (1999)
- ABC MCMC Marjoram et al. PNAS (2003)
- ABC SMC Toni and Stumpf, Bioinformatics (2010)

 $\pi_T(\theta | \Delta(X_s, X) < \epsilon_T)$

- TCSs are abundant in bacteria, plants and fungi, but apparently absent from animals.
- They regulate response to environmental stimuli.

- TCSs are abundant in bacteria, plants and fungi, but apparently absent from animals.
- They regulate response to environmental stimuli.

The ArcB-ArcA TCS

The ArcB-ArcA system in *Escherichia coli* uses a phospho-relay mechanism.

- TCSs are abundant in bacteria, plants and fungi, but apparently absent from animals.
- They regulate response to environmental stimuli.

The ArcB-ArcA TCS

The ArcB-ArcA system in *Escherichia coli* uses a phospho-relay mechanism.

- TCSs are abundant in bacteria, plants and fungi, but apparently absent from animals.
- They regulate response to environmental stimuli.

Orthodox system

The ArcB-ArcA TCS

The ArcB-ArcA system in *Escherichia coli* uses a phospho-relay mechanism.

Imperial College London

Example1 : Fast response

p(model)

Imperial College London

Example1 : Fast response

Orthodox posterior

Unorthodox posterior

 $\begin{array}{l} \mathsf{R1:} x \bullet \bullet \to o \bullet \bullet, \mathsf{R2:} ox \bullet \to xo \bullet, \mathsf{R3:} \bullet ox \to \bullet xo, \mathsf{R4:} \bullet \bullet o + \mathit{RR} \to \bullet \bullet x + \mathit{RRp}, \mathsf{R5:} \bullet xo \to \bullet ox \mathsf{R6:} \bullet o \bullet \to \bullet x \bullet, \mathsf{R7:} \bullet \bullet x + \mathit{RRp} \to \bullet \bullet o + \mathit{RR}, \mathsf{R8:} o \bullet \bullet \to x \bullet \bullet, \mathsf{R9:} \mathit{RRp} \to \mathit{RR} \end{array}$

Example2 : Robust to noise

p(model)

Imperial College London

Example2 : Robust to noise

Orthodox posterior

Unorthodox posterior

Example3 : Fast response, high maximum, low minimum

Imperial College London

Example 3: posteriors

Orthodox posterior HKp+RR->HK+RRp 0 400 1000 R2 0 200 600 1000 HKp->HK 0 400 1000 **B**3 0 400 1000 0 200 600 1000 HK+RRp->HKp+RR 0 400 D5 0 400 1000 0 200 1000 600 RRp->RR 0 400 1000 **B**7 0 400 1000 DB 0 200 600 1000 HK+S -> HKp 0 400 1000 89 0 400 1000 0 200 800 1000 $R1: x \bullet \bullet \to o \bullet \bullet, R2: ox \bullet \to xo \bullet, R3: \bullet ox \to \bullet xo, R4: \bullet \bullet o + RR \to \bullet \bullet x + RRp, R5: \bullet xo \to \bullet ox R6: \bullet o \bullet \to \bullet x \bullet, R6: \bullet o \to A6: \bullet a \to A6: \bullet A6: \bullet a \to A6: \bullet A$ R7: • • $x + RRp \rightarrow$ • • o + RR, R8: $o \bullet \bullet \rightarrow x \bullet \bullet$, R9: $RRp \rightarrow RR$

Example 3: Trajectory evolution

Imperial College

Example 3: Comparison to sensitivity analysis

Two approaches

- Examine region around optimum
- Sample uniformly from the prior

Example 3: Comparison to sensitivity analysis

Two approaches

- Examine region around optimum May miss alternative parameter combinations
- Sample uniformly from the prior

Example 3: Comparison to sensitivity analysis

Two approaches

- Examine region around optimum May miss alternative parameter combinations
- Sample uniformly from the prior May miss important regions

Future work

BioBricksTM

- Use selected BioBricks components to design genetic circuits and make predictions of behaviour under perturbations
- Build the circuit to test predictions

Genetic Design Automation (GDA)

- Genetic equivalent of Electronic Design Automation (EDA)
- Build complex genetic circuits and DNA sequence automatically from standard set of building blocks
- Engineering Genetic Circuits, Myers (2009)

Distant future

Using biological circuits to influence electronic circuit design

Acknowledgements

Michael Stumpf Xia Sheng Tina Toni Maxime Huvet Kamil Erguler Justina Norkunaite Juliane Liepe Paul Kirk Suhail Islam

christopher.barnes@imperial.ac.uk
http://www3.imperial.ac.uk/theoreticalsystemsbiology
http://abc-sysbio.sourceforge.net/