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Introduction

Synthetic genetic circuits

Understand how organisms function

Produce drugs more effectively eg anti malarials

Metabolize toxic chemicals

Modify bacteria to hunt and kill tumors

Stem cell production

Challenges

Tuning of co-operativity, repression strengths, decay rates

Genetic components relatively unreliable with large variations in parameter values

Interactions and cross-talk at the systems level

Asynchronous timing

How do we design genetic circuits to perform these functions?
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Synthetic biology vs Systems biology

System design as an inference problem

Which configuration of components will give an output O given an input I?
Which model best describes the observed data O given conditions I?

Advantages of using Bayesian framework for system design

Credible limits on parameter values vs optimum values

Model selection through Bayes factors

Sensitivity from posterior distribution

Incorporate prior biological knowledge into system design
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Approximate Bayesian Computation

θ1

θ2

Model

t

X (t)

Data, X

Simulation, Xs(θ)

d = ∆(Xs(θ),X )

Reject θ if d > ε
Accept θ if d ≤ ε
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Approximate Bayesian Computation (ABC)

Bayesian Inference

Posterior ∝ Likelihood × prior
p(θ|X ) ∝ p(X |θ) p(θ)

Approximate inference methods

Sample from approximate posterior:

p(θ|∆(Xs(θ),X ) ≤ ε).

where ∆(Xs ,X ) is distance between simulation and data.
It can be shown, as ε→ 0

p(θ|∆(Xs(θ),X ) ≤ ε)→ p(θ|X )

ABC flavours

ABC rejection Pritchard et al. Mol. Biol. Evol. (1999)

ABC MCMC Marjoram et al. PNAS (2003)

ABC SMC Toni and Stumpf, Bioinformatics (2010)
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ABC SMC

Prior, π(θ)

Define set of intermediate distributions, πt , t = 1, ....,T

ε1 > ε2 > ...... > εT

πt−1(θ|∆(Xs , X ) < εt−1)

πt (θ|∆(Xs , X ) < εt )

πT (θ|∆(Xs , X ) < εT )

Sequential importance sampling:

Sample from proposal, ηt (θt ) and weight wt (θt ) = πt (θt )/ηt (θt )

ηt (θt ) =
R
πt−1(θt−1)Kt (θt−1, θt )dθt−1

Kt (θt−1, θt ) is Markov perturbation kernel
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Bacterial two component systems (TCS)

TCSs are abundant in bacteria, plants and
fungi, but apparently absent from animals.

They regulate response to environmental
stimuli.

H∼P

D∼P

ATP

Orthodox system

The ArcB-ArcA TCS

The ArcB-ArcA system in Escherichia coli uses a
phospho-relay mechanism.

H∼P

D∼P

H∼P

D∼P

ATP

Transmitter

Domain (H1)

Receiver

Domain (D1)

Phosphotransfer

Domain (H2)

P

Unorthodox system
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Example1 : Fast response
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Example1 : Fast response

Orthodox posterior Unorthodox posterior

R1: x • • → o • •, R2: ox• → xo•, R3: •ox → •xo, R4: • • o + RR → • • x + RRp, R5: •xo → •ox R6: •o• → •x•,
R7: • • x + RRp → • • o + RR, R8: o • • → x • •, R9: RRp → RR
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Example2 : Robust to noise
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Example3 : Fast response, high maximum, low minimum
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Example 3: posteriors

Orthodox posterior Unorthodox posterior

R1: x • • → o • •, R2: ox• → xo•, R3: •ox → •xo, R4: • • o + RR → • • x + RRp, R5: •xo → •ox R6: •o• → •x•,
R7: • • x + RRp → • • o + RR, R8: o • • → x • •, R9: RRp → RR
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Example 3: Trajectory evolution
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Example 3: Comparison to sensitivity analysis

Two approaches

Examine region around optimum

May miss alternative parameter combinations

Sample uniformly from the prior

May miss important regions

2060/10000 39/10000
0.981 0.019
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Future work

BioBricksTM

Use selected BioBricks components to design genetic circuits and make predictions of
behaviour under perturbations

Build the circuit to test predictions

Genetic Design Automation (GDA)

Genetic equivalent of Electronic Design Automation (EDA)

Build complex genetic circuits and DNA sequence automatically from standard set of
building blocks

Engineering Genetic Circuits, Myers (2009)

Distant future

Using biological circuits to influence electronic circuit design
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