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Molecular biology time series

I Biological systems are dynamic, observing their time evolution
very helpful

I Time series measurements of gene expression, protein activity,
protein binding, ...

I Problem: most of these assays are highly disruptive to the
sample

I Therefore: time series = series of independent experiments
run for different lengths of time

I This has implications for modelling...
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Real gene expression time series
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Example model: Linear ODE model of transcription

I Linear Activation Model (Barenco et al., 2006, Genome
Biology)

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

I xj(t) – concentration of gene j ’s mRNA

I f (t) – concentration of active transcription factor

I Model parameters: baseline Bj , sensitivity Sj and decay Dj

I Placing a Gaussian process (GP) prior on f (t) leads to a joint
GP over all concentration profiles (Gao et al., 2008,
Bioinformatics)



How to connect the model to data?

1. Assume independent profiles for each complete (biological)
repeat

I Loses statistical power for extra independence assumptions
I Is it meaningful to order the repeats?

2. Assume one shared underlying profile with independent
observations

I Potentially sensitive to outliers



Exchangeability analysis

Assume xk
j (ti ) observation of kth repeat of jth gene at ith time

xk
: (ti )↔ xk ′

: (ti ) xk
j (ti )↔ xk ′

j (ti )

“swap arrays” “swap single gene”

“Reality” Yes No
1. Independent profiles No No
2. Shared profile Yes Yes



Solution: hierarchical GP model

I Assume the underlying f (t) is composed of a shared and an
experiment-specific part fik(t)

dxj (t)

dt
= Bj + Sj [fshared (t) + fik (t)]− Djxj (t)

I Covariance is of the same form as usual

I Introduces additional covariance terms for measurements from
the same experiment

I Alternative parametrisations of variance of fik(t)
I Shared across all experiments
I Sampled independently for each experiment



Exchangeability analysis revisited

Assume xk
j (ti ) observation of kth repeat of jth gene at ith time

xk
: (ti )↔ xk ′

: (ti ) xk
j (ti )↔ xk ′

j (ti )

“swap arrays” “swap single gene”

“Reality” Yes No
1. Independent profiles No No
2. Shared profile Yes Yes
3. Hierarchical model Yes No
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ODE model of translation and transcription

I Assume TF is transcriptionally regulated with related mRNA
y(t)

I This yields a system of ODEs (Gao et al., 2008)

df (t)

dt
= σy (t)− δf (t)

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

I The corresponding GP model can be derived analogously to
the previous case



Independent profiles
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Hierarchical model
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Conclusion

I Previous models of time series expression data are wrong
I Invalid exchangeability assumptions

I Proposed hierarchical model rectifies this
I Open problems / work in progress

I Need to move beyond Gaussian likelihoods?
I How to do MCMC in these models?
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Coming soon to Bioconductor:
tiger — Transcription factor Inference through
Gaussian process Expression Reconstruction
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