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How to understand a complex system?

| Richard Feynman:
“What | cannot create, | do not understand.”

Functional Genomics:
“What | cannot break, | do not understand.”




Breaking the system
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Phenotype: viability versus cell death
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Interpretation:

- non-essential gene
- redundancy

Interpretation:
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Phenotype: pathway activity
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Phenotype: organism morphology

Smed beta-cateninl RNAI

Whole organism: planaria

Boutros and Ahringer, Nat Rev 2008



Phenotype cell morphology

Raw image Cell classification
Human Hela cells Boutros and Ahringer, Nat Rev 2008




Phenotype: global gene expression
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Network reconstruction from phenotypes

“Classical” approach ge‘a
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Markowetz et al 2005, 2007
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Nested Effects Models

Pathway genes: X, Y, Z
- core topology
- to be reconstructed
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Marginal likelihood
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NEM model space
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Anatomy of the NFkB pathway
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Nested Effect Models for NFkB
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Natural experiments
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Copy number alterations
measured by
genomic markers
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The METABRIC project

With data from >1000 tumours

1. describe the genomic landscape of breast cancer

— chromosomal alterations, allelic ratios, breakpoints,
genomic instability, mutations in oncogenes, gene
expression, ...

2. correlate molecular profiles with clinical outcome
— to find predictive markers for eq. survival

— to define molecular subsets of tumours with unique
clinical phenotypes



Impact of CNA on expression

Global: Which transcriptional changes are copy-number Yinyin
dependent?

Local: for each copy-number dependent gene, which
particular genomic loci have most influence on its
expression?
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Differential requlation

Yinyin Yuan

Subtype A, eg ER+ breast cancer
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Subtype B, eg ER- breast cancer
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Gene Expression

Differential requlation
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Reference network (ER+/-)
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Differential network (ER-)

Copy-number changes
at regulating loci
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Summary

1. Gene perturbation screens

— Nested Effects Models reconstruct pathways from nested
structure of downstream effects

— Application in NFkB

2. Breast cancer genomics
— Metabric: the genomic landscape of breast cancer
— Copy-number alterations => Gene expression

— Regression models to identify differential regulation in
cancer sub-types



Future plans

« Nested Effects Models

— dynamic models: infer pathway from
phenotypes observed over time

~iny” d

Xin Wang
— re-wiring of network over time

- Breast cancer genomics
— Stratification into disease sub-populations

and others Yinyin Yuan
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Introduction

Functional genomics has demonstrated
considerable success in inferring the nner
working of a cell through analysis of its
response  to  various perturbations. In
recent years several technological advanc-
es have pushed gene perturbation screens
to the forefront of functional genomics.
Most importantly, modern technologies
make it possible to probe gene function on
a genome-wide scale in many model
organisms and human. For example, large
collections of knock-out mutants play a
prominent role in the study ol Saccharomyces
cerevstae [1]. and ENA interlference (BN AL

and survival of cancer cell lines are also
the least studied [5].

A goal becoming more and more
prominent in both experimental as well
as computational research is to leverage
gene perturbation screens to the identfi-
cation ol molecular interactions, cellular
pathways, and regulatory mechanisms.
Research focus is shifting from under-
standing the phenotypes of single proteins
to understanding how proteins fulfill their
function, what other proteins they interact
with, and where they act in a pathway.
Novel ideas on how to use perturbation
screens to uncover cellular wiring dia-
grams can lead to a better understanding
ol how cellular networks are deregulated
in diseases like cancer. This knowledge is
indispensable for finding new drug targets
to attack the drivers of a disease and not
only the symptoms.

This review surveys the current state-of-

activity ol reporter constructs, e.g., a
luciferase, downstream of a pathway of
mterest [9]. Low-dimensional phenotyping
screens can identify candidate genes on a
genome-wide scale and are often used as a
first step for follow-up analysis. We will
discuss methods to functionally interpret
hits from low-dimensional phenotyping
screens and to place them in the context
of cellular networks in the first part of this
review.

The second part will be devoted to high-
dimensional phenotyping screens, which
evaluate a large number of cellular
features at the same tme. Observing
system-wide changes promises key insights
into cellular mechanisms and pathways
that can not be supplied by low-dimen-
sional screens. For example, high-dimen-
sional phenotypes can include changes in
cell morphology [10-13], or growth rates
under a wide range ol conditions [14], or

- - -
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Reconstructing networks from
experimental and natural
genetic perturbations

Thank you!
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