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The immunological synapse

As a part of iImmune response a
lymphocyte ( immunological cell: T-
cell, NK-cell) attaches to an antigen-
presenting cell (APC).

The immunological synapse is the
interface between a lymphocyte
and an APC.
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The immunological synapse. T-cell data.
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Synapse environment modeling and quantification
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Two colour fluorescence image of a synapse pattern (Shaw and Dustin
1997) with labeled ICAM1 (Red) and CD58 (green). Segregatlon by size:
CD58-CD2 ~13nm and ICAM-LFA1 ~40nm.



Synapse environment modeling and guantification

« Total green fluorescence is produced by free CD58 ligands and
CD58:CD2 complexes:

E(Fl FS (X)) . 0!1 Ll, free?

E(Fl,CI (X)) =& (Ll, free T C(X))’

» Red fluorescence corresponds to ICAM1 and is only from unbound

I.igands: E(FZ,FS (X)) =05l free-
E(Fz,u (X)) =a,l, (X)

Here L fee ,C(X), Lo LZ(X) are expected local molecular densities.

We use the Boltzmann distribution to determine the energy of ICAM and the
CD58:CD2 complex in the area corresponding to pixel X

C.ox IS maximum complex
C(x)=C,__exp(- G, (X)) concentration, and L, . |

ICAM concentration on free
L2 (X) = I—2, freeexp(_ GICAM (X)) surface



Exclusion by size.

Small complex, binding ""'____ L icamM The hypotheSiS of
in regions of close contact eXC|USi0n by Size states
/ that cell-surface
. . molecules and molecule
___Diffusion
. Complexes are Segregated

, (excluded) according to
their size.

Here we model CD2:CD58 bond stretching and ICAM molecule
compression as elastic springs:

— K582 (e P — Kicam(|
Gar¥)=5 T2 kaa)'s Geandd)=Z hom—200

| is the length of a molecule/complex
z Is the local distance between the cell membranes,
K is an elasticity parameter.



Problem statement

The hypothesis of exclusion by size results in the linear dependence

between g, =G, and g, = \/G,..:

1/2

R &
_| Ksg2Kcam
A Kicam Y1 T4/ Ksg2 9, = |IICAM £ |58:2|

2k, T

Relating the variables 919> with experimental fluorescence data we
want to estimate 0,,Y,and the parameters of the linear dependence



Statistical inference

The dependence between the exclusion potentials and fluorescence
Intensities for a particular pixel x is assumed to be stochastic:

F, ~a1Poisson(L1(1+ C{exp(— 05 )))
B ~a2Poisson(Lzexp(— g22x ))

It IS more convenient to work with continuous distributions so we switched
to normal approximations of Poisson distribution

F. ~Normal(a1L1(1+ Cl’exp( g1X )) (1+C exp( gfx )))
F,, ~Normal (a2 Lzexp(— ng ),052 Lzexp(— g2X ))



Bayesian approach. Separate analysis.

We have the conditional distributions

p(le‘al’ L glx) ’ p(F2x‘a2’ L,, 0, )’

and data set <F1x’ F2x>x€x'

One approach is to estimate J:) 9, based on the posterior distributions

plgulFu ) PlgsFar)

and then estimate the parameters of linear dependence.
As the global parameters are not known we will have to deal with the full

joint distributions
p({glx }’ a,, L, C {le })’ P ({g 2% }’ a,, Lz‘{sz })




Introducing the dependence into the model.
Joint analysis.

As an alternative to the separate reconstruction we can also introduce an
extra equation describing the linear dependence into the model

rle ~Normal (051 L, (1+ Elexp( glx )) <1+C exp( glzx )))
F,, ~Norma|(0¢2 LzeXp(— 0> )1052 Lzexp(— 0o ))
ng)( =a+ bglx'

AN




MCMC inference algorithm

In case of separate analysis to estimate the variables 9;: 9, we sample
their values from the posterior distribution using single-component
Metropolis - Hastings MCMC algorithms separately for different
fluorescence channels.

For the joint analysis the coefficients of the linear dependence are the
parameters of the model and are estimated with the other unknown
parameters. A joint MCMC algorithm is developed to analyse the
fluorescence channels together.

The full conditional distributions for the components are not analytically
tractable therefore a random walk algorithm is used to update the variables
with normally distributed steps. The variance for the RW steps is “tuned”

during burn in period.



MCMC algorithm. Tests and improvements.
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Output of the MCMC algorithm

As a result we obtain samples from the posterior distributions for the
variables 9::9; that can be used afterwards to estimate the
parameters of the linear dependence:

9, (green)




Results of separate and joint analysis
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Extending to 3D stacks. NK-cell data

NK cells with 221 cells.

We have 3D scanning
confocal images in 2
fluorophores:

ICAM-Cherry (red)
HLA-cw6-GFP (green)

from which we extract
exclusion energies.

We track the surface and
measure fluorescence in
the contact region and on a
free surface.




(s,w) data representation

Switching to stack data we have to switch from 2d surface densities to 1d slice
surface densities. The main problem is how to preprocess fluorescence data as
the fluorescence is distributed across the cell membrane.
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We introduced the concept of membrane width:
2
T(S)W
L(s,w) = L(s)exp —%

where the parameter 7(S) characterizes the width of the membrane
at the location S.



Membrane width modeling

« Green fluorescence is produced by free ligands on the free surface of the
cell and by free ligands together with the complexes in the contact interface:

E(Fl,FS (81 W)) 7 Ll, free exp(_ TFS (S)WZ ];

E(Fl’CI (5 W)) & (Ll’ free T Cmax exp(_ Gl (5)))9Xp[_ fa (S)W2 ]

» Red fluorescence is only from the unbound ICAM1 ligand, which is freely
diffusing on the free surface and partly excluded in the contact interface:

E(F, s (5.W)= L, e exp(_ s (z)wz j
e ]

E(FZ,CI (S’ W)) 2
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Collaborators:

Functional characterisation and transformants: Anton van
der Merwe, Shiqgiu Xiong (Sir William Dunn, Oxford)

Imaging and transformants: Dan Davis, Karsten Kohler
(Division of Cell and Molecular Biology, Imperial)

Keith Gould (Faculty of Medicine, Imperial).

Thanks to
Mike Dustin
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