Comparing Probabilistic Models for Melodic Sequences

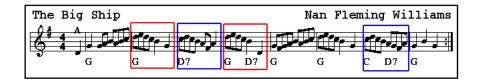
Athina Spiliopoulou, Amos Storkey a.spiliopoulou@ed.ac.uk, a.storkey@ed.ac.uk

Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh

> ECML-PKDD 2011 September 7

The Problem

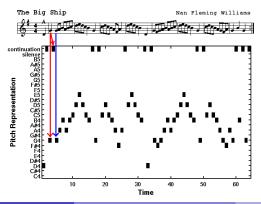
- Learn a generative model for melody directly from a set of musical sequences.
 - Capture the musical structure automatically
 - Avoid utilizing prior musical knowledge



- Challenging structural aspects
 - Repetition
 - Componential influences

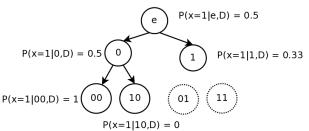
The Data

- 117 Reels from the Nottingham Folk Music Database
 - 80 for training, 37 for testing
 - All pieces in the key of G and in 4/4 meter
 - Information: pitch & duration of the melody notes
 - Discretize to 8th notes
 - Truncate to 2 octaves: C4-B5
 - Use continuation value for longer events



Variable Length Markov Model (VMM)

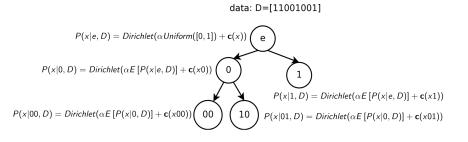
- State-of-the-art results in automated melody generation (Dubnov et al., 2003; Paiement, 2008)
 - Parses melody into a lexicon of musical motifs
- Length of history to consider is not fixed but depends on the context
- Probabilistic Suffix Tree
 - nodes: labeled by contexts, identified by distributions $P(x_t | context)$
 - depth of node: length of the context
 - learning: add nodes that occur frequently enough in the data



data: D=[11001001]

Dirichlet Variable Length Markov Model (Dirichlet-VMM)

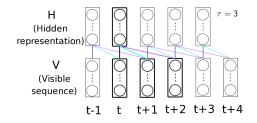
- Smoothing: Bayesian approach
 - Introduce an appropriate prior distribution at each node of the tree
- Hierarchical model: each conditional distribution in the tree is sampled by a Dirichlet distribution centered at the sample multinomial of the parent node.



Time-Convolutional Restricted Boltzmann Machine (TC-RBM)

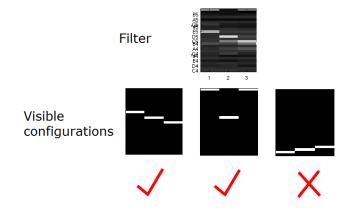
- Distributed representation of the input space
- Latent units receive input from subsequence, not individual time step
- Energy function in bilinear form efficient learning algorithm

$$E(\mathbf{V},\mathbf{H}|\boldsymbol{\theta}) = -\sum_{t} \left(\mathbf{c}^{\mathsf{T}} \mathbf{v}_{t} + \mathbf{b}^{\mathsf{T}} \mathbf{h}_{t} + \sum_{k=0}^{\tau-1} \mathbf{v}_{t+k}^{\mathsf{T}} \mathbf{W}_{k} \mathbf{h}_{t} \right), \ P(\mathbf{V},\mathbf{H}|\boldsymbol{\theta}) = \frac{\exp(-E(\mathbf{V},\mathbf{H};\boldsymbol{\theta}))}{Z(\boldsymbol{\theta})}$$



Time-Convolutional Restricted Boltzmann Machine (TC-RBM)

- Distributed representation of the input space
- Latent units receive input from subsequence, not individual time step
- Energy function in bilinear form efficient learning algorithm



Model Evaluation

• What is a good generative model for music?

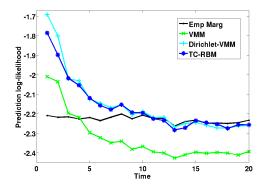
- How do we evaluate the "musicality" of model samples?
- Interesting direction: how do music teachers assess students' compositions?
- Proxies for quantitative evaluation of the models
 - Prediction log-likelihood
 - Kullback-Leibler divergence between the statistics of model samples and test sequences
- Qualitative evaluation
 - Examine the latent features of the TC-RBM
 - Listen to model generations

Experiments: Prediction Task

• How well can the models predict the future in test pieces?

Prediction log-likelihood for the τ -th future time step

$$\log L_{\tau}(\boldsymbol{\theta}, \boldsymbol{M}; \mathbf{D}_n) = \frac{1}{T_n} \sum_{t=1}^{T_n} \log P(d_{t+\tau} | d_1, \dots, d_t, \boldsymbol{\theta}, \boldsymbol{M})$$



Experiments: Kullback-Leibler divergence between model and data statistics

• How well do model statistics match the data statistics?

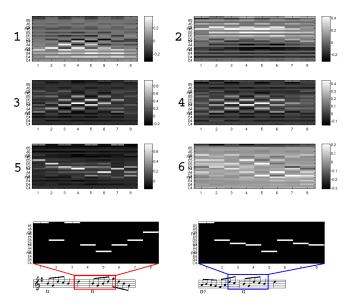
P: empirical frequencies in the data Q: empirical frequencies in model samples d_t : observation at time t

Order 1:
$$D_{\text{KL}}(P(d_t) || Q(d_t)) = \frac{1}{N} \sum_{n=1}^{N} P(d_t^n) \log \frac{P(d_t^n)}{Q(d_t^n)}$$

Order 2: $D_{\text{KL}}(P(d_t, d_{t+1}) || Q(d_t, d_{t+1}))$

	order 1	order 2	order 3	order 4
TC-RBM	0.064	0.273	0.872	2.420
Dirichlet-VMM	0.045	0.302	1.158	2.594
VMM	0.187	0.481	1.331	3.242

Experiments: Learning Musical Features with the TC-RBM



Conclusions and Current Research

- Problem
 - Melody generation
- Models
 - Dirichlet Variable Length Markov Model
 - Time Convolutional Restricted Boltzmann Machine
- Results
 - Models outperform current state-of-the-art in automated melody generation
 - Hidden units in TC-RBM learn interesting music features

- Models that deal with inter- and intra-piece variability
- Introduce hidden structure in the Dirichlet-VMM

Thank You!

Comparing Probabilistic Models for Melodic Sequences Athina Spiliopoulou and Amos Storkey, ECML-PKDD 2011

