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The Problem

@ Learn a generative model for melody directly from a set of musical

sequences.

o Capture the musical structure automatically
e Avoid utilizing prior musical knowledge
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@ Challenging structural aspects

o Repetition

e Componential influences
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The Data

@ 117 Reels from the Nottingham Folk Music Database
e 80 for training, 37 for testing
o All pieces in the key of G and in 4/4 meter
o Information: pitch & duration of the melody notes
o Discretize to 8th notes
e Truncate to 2 octaves: C4-B5
o Use continuation value for longer events
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Variable Length Markov Model (VMM)

@ State-of-the-art results in automated melody generation (Dubnov et
al., 2003; Paiement, 2008)

o Parses melody into a lexicon of musical motifs
@ Length of history to consider is not fixed but depends on the context
@ Probabilistic Suffix Tree

e nodes: labeled by contexts, identified by distributions P(x;|context)

o depth of node: length of the context

e learning: add nodes that occur frequently enough in the data

data: D=[11001001]

P(x=1|e,D) = 0.5

P(x=1]10,D) = 0 D
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Dirichlet Variable Length Markov Model (Dirichlet-VMM)

@ Smoothing: Bayesian approach
e Introduce an appropriate prior distribution at each node of the tree
@ Hierarchical model: each conditional distribution in the tree is
sampled by a Dirichlet distribution centered at the sample
multinomial of the parent node.

data: D=[11001001]

P(x|e, D) = Dirichlet(a:Uniform([0, 1]) + ¢(x))

P(x|0, D) = Dirichlet(«.E [P(x|e, D)] + ¢(x0))

P(x|1, D) = Dirichlet(«.E [P(x|e, D)] + ¢(x1))

P(x|00, D) = Dirichlet(c.E [P(x|0, D)] + €(x00)) P(x|01, D) = Dirichlet(aE [P(x|0, D)] + c(x01))
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Time-Convolutional Restricted Boltzmann Machine
(TC-RBM)

@ Distributed representation of the input space
@ Latent units receive input from subsequence, not individual time step
@ Energy function in bilinear form - efficient learning algorithm
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Time-Convolutional Restricted Boltzmann Machine
(TC-RBM)

@ Distributed representation of the input space
@ Latent units receive input from subsequence, not individual time step
@ Energy function in bilinear form - efficient learning algorithm

Filter

Visible
configurations

Athina Spiliopoulou, Amos Storkey (UoE) 07/09/11 7/13



Model Evaluation

@ What is a good generative model for music?
e How do we evaluate the “musicality” of model samples?
o Interesting direction: how do music teachers assess students’
compositions?
@ Proxies for quantitative evaluation of the models
e Prediction log-likelihood
o Kullback-Leibler divergence between the statistics of model samples
and test sequences
e Qualitative evaluation
o Examine the latent features of the TC-RBM
o Listen to model generations

Athina Spiliopoulou, Amos Storkey (UoE) ECML-PKDD 2011 07/09/11 8 /13



Experiments: Prediction Task

@ How well can the models predict the future in test pieces?

Prediction log-likelihood for the 7-th future time step

Th
log L+(8, M;D,) = 4 log P(dyy-|dh, ..., di, 0, M)
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Experiments: Kullback-Leibler divergence between model

and data statistics

@ How well do model statistics match the data statistics?

P: empirical frequencies in the data

d:: observation at time t

Q: empirical frequencies in model samples J

N

dn
Order 1:  Dkr(P(d:)||Q(dr)) = ,{,Z P(d;) log din)) J
Order 2:  Dxr(P(d:, det1)||Q(de, dit1)) J
order 1 | order 2 | order 3 | order 4

TC-RBM 0.064 0.273 0.872 2.420

Dirichlet-VMM || 0.045 0.302 1.158 2.594

VMM 0.187 0.481 1.331 3.242
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Experiments: Learning Musical Features with the TC-RBM
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Conclusions and Current Research

@ Problem
o Melody generation
@ Models

o Dirichlet Variable Length Markov Model
o Time Convolutional Restricted Boltzmann Machine

Results

o Models outperform current state-of-the-art in automated melody
generation
e Hidden units in TC-RBM learn interesting music features

Models that deal with inter- and intra-piece variability
Introduce hidden structure in the Dirichlet-VMM
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