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Large dimensional data

Let w1,w2 . . . ∈ CN be independently drawn from an N-variate process of mean zero and
covariance R = E[w1wH

1 ] ∈ CN×N .

Law of large numbers
As n→∞,

1
n

n∑
i=1

wi wH
i = WWH a.s.−→ R

In reality, one cannot afford n→∞.
I if n� N,

Rn =
1
n

n∑
i=1

wi wH
i

is a “good” estimate of R.
I if N/n = O(1), and if both (n,N) are large, we can still say, for all (i, j),

(Rn)ij
a.s.−→ (R)ij

What about the global behaviour? What about the eigenvalue distribution?



Tools for Random Matrix TheoryIntroduction to Large Dimensional Random Matrix Theory 6/113

Empirical and limit spectra of Wishart matrices

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

Eigenvalues of Rn

D
en

si
ty

Empirical eigenvalue distribution

Marcenko-Pastur Law

Figure: Histogram of the eigenvalues of Rn for n = 2000, N = 500, R = IN
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The Marcenko-Pastur Law
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Figure: Marcenko-Pastur law for different limit ratios c = lim N/n.
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The Marcenko-Pastur law

Let W ∈ CN×n have i.i.d. elements, of zero mean and variance 1/n.
Eigenvalues of the matrix

n


 WH


︸ ︷︷ ︸

N


W


when N, n→∞ with N/n→ c IS NOT IDENTITY!

Remark: If the entries are Gaussian, the matrix is called a Wishart matrix with n degrees of
freedom. The exact distribution is known in the finite case.



Tools for Random Matrix TheoryHistory of Mathematical Advances 10/113

The birth of large dimensional random matrix theory

E. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions,” The annals of
mathematics, vol. 62, pp. 546-564, 1955.

XN =
1
√

N



0 +1 +1 +1 −1 −1 · · ·
+1 0 −1 +1 +1 +1 · · ·
+1 −1 0 +1 +1 +1 · · ·
+1 +1 +1 0 +1 +1 · · ·
−1 +1 +1 +1 0 −1 · · ·
−1 +1 +1 +1 −1 0 · · ·
...

...
...

...
...

...
. . .


As the matrix dimension increases, what can we say about the eigenvalues (energy levels)?
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Semi-circle law, Full circle law...

I If XN ∈ CN×N is Hermitian with i.i.d. entries of mean 0, variance 1/N above the diagonal,
then F XN

a.s.−→ F where F has density f the semi-circle law

f (x) =
1

2π

√
(4− x2)+

I Shown from the method of moments

lim
N→∞

1
N

tr X2k
N =

1
k + 1

C2k
k

which are exactly the moments of f (x)!
I If XN ∈ CN×N has i.i.d. 0 mean, variance 1/N entries, then asymptotically its complex

eigenvalues distribute uniformly on the complex unit circle.
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Semi-circle law
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Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for N = 500
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Circular law
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Figure: Eigenvalues of XN with i.i.d. standard Gaussian entries, for N = 500.
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More involved matrix models

I much study has surrounded the Marcenko-Pastur law, the Wigner semi-circle law etc.
I for practical purposes, we often need more general matrix models

I products and sums of random matrices
I i.i.d. models with correlation/variance profile
I distribution of inverses etc.

I for these models, it is often impossible to have a closed-form expression of the limiting
distribution.

I sometimes we do not have a limiting convergence.

To study these models, the method of moments is not enough!
A consistent powerful mathematical framework is required.
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Eigenvalue distribution and moments

I The Hermitian matrix RN ∈ CN×N has successive empirical moments MN
k , k = 1, 2, . . .,

MN
k =

1
N

N∑
i=1

λk
i

I In classical probability theory, for A, B independent,

ck (A + B) = ck (A) + ck (B)

with ck (X) the cumulants of X . The cumulants ck are connected to the moments mk by,

mk =
∑

π∈P(k)

∏
V∈π

c|V |

A natural extension of classical probability for non-commutative random variables exist, called

Free Probability
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Free probability

I To connect the moments of A + B to those of A and B, independence is not enough. A and B
must be asymptotically free,

I two Gaussian matrices are free
I a Gaussian matrix and any deterministic matrix are free
I unitary (Haar distributed) matrices are free
I a Haar matrix and a Gaussian matrix are free etc.

I Similarly as in classical probability, we define free cumulants Ck ,

C1 = M1

C2 = M2 −M2
1

C3 = M3 − 3M1M2 + 2M2
1

R. Speicher, “Combinatorial theory of the free product with amalgamation and operator-valued
free probability theory,” Mem. A.M.S., vol. 627, 1998.

I Combinatorial description by non-crossing partitions,

Mn =
∑

π∈NC(n)

∏
V∈π

C|V |
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Non-crossing partitions
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Figure: Non-crossing partition π = {{1, 3, 4}, {2}, {5, 6, 7}, {8}} of NC(8).
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Moments of sums and products of random matrices

I Combinatorial calculus of all moments

Theorem
For free random matrices A and B, we have the relationship,

Ck (A + B) = Ck (A) + Ck (B)

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏
V1∈π1
V2∈π2

C|V1|(A)C|V2|(B)

in conjunction with free moment-cumulant formula, gives all moments of sum and product.

Theorem
If F is a compactly supported distribution function, then F is determined by its moments.

I In the absence of support compactness, it is impossible to retrieve the distribution function
from moments. This is in particular the case of Vandermonde matrices.
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Free convolution
I In classical probability theory, for independent A, B,

µA+B(x) = µA(x) ∗ µB(x)
∆
=

∫
µA(t)µB(x − t)dt

I In free probability, for free A, B, we use the notations

µA+B = µA � µB, µA = µA+B � µB, µAB = µA � µB, µA = µA+B � µB

Ø. Ryan, M. Debbah, “Multiplicative free convolution and information-plus-noise type matrices,”
Arxiv preprint math.PR/0702342, 2007.

Theorem
Convolution of the information-plus-noise model Let WN ∈ CN×n have i.i.d. Gaussian entries of
mean 0 and variance 1, AN ∈ CN×n, such that µ 1

n AN AH
N
⇒ µA, as n/N → c. Then the eigenvalue

distribution of
BN =

1
n

(AN + σWN ) (AN + σWN )H

converges weakly and almost surely to µB such that

µB =
(
(µA � µc) � δσ2

)
� µc

with µc the Marcenko-Pastur law with ratio c.
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Similarities between classical and free probability

Classical Probability Free probability

Moments mk =

∫
xk dF (x) Mk =

∫
xk dF (x)

Cumulants mn =
∑

π∈P(n)

∏
V∈π

c|V | Mn =
∑

π∈NC(n)

∏
V∈π

C|V |

Independence classical independence freeness
Additive convolution fA+B = fA ∗ fB µA+B = µA � µB

Multiplicative convolution fAB µAB = µA � µB
Sum Rule ck (A + B) = ck (A) + ck (B) Ck (A + B) = Ck (A) + Ck (B)

Central Limit
1
√

n

n∑
i=1

xi → N (0, 1)
1
√

n

n∑
i=1

Xi ⇒ semi-circle law
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The Stieltjes transform

Definition
Let F be a real distribution function. The Stieltjes transform mF of F is the function defined, for
z ∈ C \ R, as

mF (z) =

∫
1

λ− z
dF (λ)

For a < b real, denoting z = x + iy , we have the inverse formula

F ′(x) = lim
y→0

1
π
=[mF (x + iy)]

Knowing the Stieltjes transform is knowing the eigenvalue distribution!
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Remark on the Stieltjes transform

I If F is the eigenvalue distribution of a Hermitian matrix XN ∈ CN×N , we might denote

mX
∆
=mF , and

mX(z) =

∫
1

λ− z
dF (λ) =

1
N

tr (XN − zIN )−1

I For compactly supported eigenvalue distribution,

mF (z) = −
1
z

∫
1

1− λ
z

= −
∞∑

k=0

MN
k z−k−1

The Stieltjes transform is doubly more powerful than the moment approach!
I conveys more information than any K -finite sequence M1, . . . ,MK .
I is not handicapped by the support compactness constraint.

I however, Stieltjes transform methods, while stronger, are more painful to work with.
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The Marcenko-Pastur law

Theorem
Let XN ∈ CN×n have i.i.d. zero mean variance 1/n entries with finite eighth order moments. As
n,N →∞ with N

n → c ∈ (0,∞), the e.s.d. of XNXH
N converges almost surely to a nonrandom

distribution function Fc with density fc given by

fc(x) = (1− c−1)+δ(x) +
1

2πcx

√
(x − a)+(b − x)+

where a = (1−
√

c)2, and b = (1 +
√

c)2.
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Diagonal entries of the resolvent

Since we want an expression of mF , we start by identifying the diagonal entries of the resolvent
(XNXH

N − zIN )−1 of XNXH
N . Denote

XN =

[
yH

Y

]
Now, for z ∈ C+, we have

(
XNXH

N − zIN
)−1

=

[
yHy− z yHYH

Yy YYH − zIN−1

]−1

Consider the first diagonal element of (RN − zIN )−1. From the matrix inversion lemma,(
A B
C D

)−1
=

(
(A− BD−1C)−1 −A−1B(D− CA−1B)−1

−(A− BD−1C)−1CA−1 (D− CA−1B)−1

)
which here gives [(

XNXH
N − zIN

)−1
]

11
=

1
−z − zyH(YHY− zIn)−1y
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Trace Lemma

Z. Bai, J. Silverstein, “Spectral Analysis of Large Dimensional Random Matrices”, Springer Series
in Statistics, 2009.

To go further, we need the following result,

Theorem
Let {AN} ∈ CN×N . Let {xN} ∈ CN , be a random vector of i.i.d. entries with zero mean, variance
1/N and finite 8th order moment, independent of AN . Then

xH
NANxN −

1
N

tr AN
a.s.−→ 0.

For large N, we therefore have approximately[(
XNXH

N − zIN
)−1

]
11
'

1
−z − z 1

N tr(YHY− zIn)−1



Tools for Random Matrix TheoryIntroduction of the Stieltjes Transform 29/113

Rank-1 perturbation lemma

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.

It is somewhat intuitive that adding a single column to Y won’t affect the trace in the limit.

Theorem
Let A and B be N × N with B Hermitian positive definite, and v ∈ CN . For z ∈ C \ R−,∣∣∣∣ 1

N
tr
(

(B− zIN )−1 − (B + vvH − zIN )−1
)

A
∣∣∣∣ ≤ 1

N
‖A‖

dist(z,R+)

with ‖A‖ the spectral norm of A, and dist(z,A) = infy∈A ‖y − z‖.
Therefore, for large N, we have approximately,[(

XNXH
N − zIN

)−1
]

11
'

1
−z − z 1

N tr(YHY− zIn)−1

'
1

−z − z 1
N tr(XH

NXN − zIn)−1

=
1

−z − z n
N mF (z)

in which we recognize the Stieltjes transform mF of the l.s.d. of XH
NXN .
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End of the proof

We have again the relation
n
N

mF (z) = mF (z) +
N − n

N
1
z

hence [(
XNXH

N − zIN
)−1

]
11
'

1
n
N − 1− z − zmF (z)

Note that the choice (1, 1) is irrelevant here, so the expression is valid for all pair (i, i). Summing
over the N terms and averaging, we finally have

mF (z) =
1
N

tr
(

XNXH
N − zIN

)−1
'

1
c − 1− z − zmF (z)

which solve a polynomial of second order. Finally

mF (z) =
c − 1

2z
−

1
2

+

√
(c − 1− z)2 − 4z

2z
.

From the inverse Stieltjes transform formula, we then verify that mF is the Stieltjes transform of the
Marcenko-Pastur law.
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Asymptotic results using the Stieltjes transform

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.

Theorem
Let BN = XNTNXH

N ∈ CN×N , XN ∈ CN×n has i.i.d. entries of mean 0 and variance 1/N,
F TN ⇒ F T , n/N → c. Then, F BN ⇒ F almost surely, F having Stieltjes transform

mF (z) =

(
c
∫

t
1 + tmF (z)

dF T (t)− z

)−1

=

[
1
N

tr TN
(
mF (z)TN + IN

)−1 − z
]−1

which has a unique solution mF (z) ∈ C+ if z ∈ C+, and mF (z) > 0 if z < 0.

I in general, no explicit expression for F .

I Stieltjes transform of BN = T
1
2
N XH

NXNT
1
2
N with asymptotic distribution F ,

mF = cmF + (c − 1)
1
z

Spectrum of the sample covariance matrix model BN =
∑n

i=1 x′i x
′H
i , with X′HN = [x′1, . . . , x

′
n], x′i

i.i.d. with zero mean and covariance TN = E[x′1x′H1 ].
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Getting F ′ from mF

I Remember that, for a < b real,

f (x)
∆
=F ′(x) = lim

y→0

1
π
=[mF (x + iy)]

I to plot the density f (x), span z = x + iy on the line {x ∈ R, y = ε} parallel but close to the
real axis, solve mF (z) for each z, and plot =[mF (z)].

Example (Sample covariance matrix)
For N multiple of 3, let dF T (x) = 1

3 δ(x − 1) + 1
3 δ(x − 3) + 1

3 δ(x − K ) and let BN = T
1
2
N XH

NXNT
1
2
N

with F BN → F , then

mF = cmF + (c − 1)
1
z

mF (z) =

(
c
∫

t
1 + tmF (z)

dF T (t)− z

)−1

We take c = 1/10 and alternatively K = 7 and K = 4.
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Spectrum of the sample covariance matrix
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Figure: Histogram of the eigenvalues of BN = T
1
2
N XH

N XN T
1
2
N , N = 3000, n = 300, with TN diagonal composed of

three evenly weighted masses in (i) 1, 3 and 7 on top, (ii) 1, 3 and 4 at bottom.
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The Shannon Transform

A. M. Tulino, S. Verdù, “Random matrix theory and wireless communications,” Now Publishers Inc.,
2004.

Definition
Let F be a probability distribution, mF its Stieltjes transform, then the Shannon-transform VF of F
is defined as

VF (x)
∆
=

∫ ∞
0

log(1 + xλ)dF (λ) =

∫ ∞
x

(
1
t
−mF (−t)

)
dt

If F is the distribution function of the eigenvalues of XXH ∈ CN×N ,

VF (x) =
1
N

log det
(

IN + xXXH
)
.

Note that this last relation is fundamental to wireless communication purposes!
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Models studied with analytic tools

I Models involving i.i.d. matrices
I sample covariance matrix models, XTXH and T

1
2 XHXT

1
2

I doubly correlated models, R
1
2 XTXHR

1
2 . With X Gaussian, Kronecker model.

I doubly correlated models with external matrix, R
1
2 XTXHR

1
2 + A.

I variance profile, XXH, where X has i.i.d. entries with mean 0, variance σ2
i,j .

I Ricean channels, XXH + A, where X has a variance profile.

I sum of doubly correlated i.i.d. matrices,
∑K

k=1 R
1
2
k Xk Tk XH

k R
1
2
k .

I information-plus-noise models (X + A)(X + A)H

I frequency-selective doubly-correlated channels (
∑K

k=1 R
1
2
k Xk Tk Xk R

1
2
k )(
∑K

k=1 R
1
2
k Xk Tk Xk R

1
2
k )

I sum of frequency-selective doubly-correlated channels
∑K

k=1 R
1
2
k Hk Tk HH

k R
1
2
k , where

Hk =
∑L

l=1 R′kl
1
2 Xkl T′kl X

H
kl R
′
kl

1
2 .

I Models involving a column subset W of unitary matrices

I sum of doubly correlated Haar matrices
∑K

k=1 R
1
2
k Wk Tk WH

k R
1
2
k

I sum of products of correlated i.i.d. and/or Haar matrices
∑K

k=1 R
1
2
k Xk Tk WH

k Sk WH
k Tk Xk R

1
2
k

In most cases, T and R can be taken random, but independent of X. More involved random
matrices, such as Vandermonde matrices, were not yet studied.
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Models studied with moments/free probability

I asymptotic results
I most of the above models with Gaussian X.
I products V1VH

1 T1V2VH
2 T2... of Vandermonde and deterministic matrices

I conjecture: any probability space of matrices invariant to row or column permutations.
I marginal studies, not yet fully explored

I rectangular free convolution: singular values of rectangular matrices
I finite size models. Instead of almost sure convergence of mXN as N →∞, we can study finite size

behaviour of E[mXN ].
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Uplink random CDMA

Uplink Random CDMA Network

P1
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h1
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h4
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Capacity of uplink random CDMA

I System model conditions,
I uplink random CDMA
I K mobile users, 1 base station
I N chips per CDMA spreading code.
I User k , k ∈ {1, . . . ,K} has code wk ∼ CN (0, IN )
I User k transmits the symbol sk .
I User k ’s channel is hk

√
Pk , with Pk the power of user k

I The base station receives

y =
K∑

k=1

hk wk
√

Pk sk + n

I This can be written in the more compact form

y = WHP
1
2 s + n

with
I s = [s1, . . . , sK ]T ∈ CK ,
I W = [w1, . . . ,wK ] ∈ CN×K ,
I P = diag(P1, . . . ,PK ) ∈ CK×K ,
I H = diag(h1, . . . , hK ) ∈ CK×K .
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MMSE decoder
I Consists into taking

rk = wH
k

(
WHPHHWH + σ2IN

)−1
y

as symbol for user k .
I The SINR for user’s k signal is

γ
(MMSE)
k = Pk |hk |2wH

k (
∑

1≤i≤K
i 6=k

Pi |hi |2wi wH
i + σ2IN )−1wk (1)

= Pk |hk |2wH
k (WHPHHWH − Pk |hk |2wk wH

k + σ2IN )−1wk . (2)

I Now we have the following result

Theorem (Trace Lemma)
If x ∈ CN is i.i.d. with entries of zero mean, variance 1/N, and A ∈ CN×N is independent of x, then

xHAx =
∑
i,j

x∗i xj Aij
a.s.−→

1
N

tr A.

I Applying this result, for N large,

wH
k (WHPHHWH−Pk |hk |2wk wH

k +σ2IN )−1wk−
1
N

tr(WHPHHWH−Pk |hk |2wk wH
k +σ2IN )−1 a.s.−→ 0.
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MMSE decoder

wH
k (WHPHHWH−Pk |hk |2wk wH

k +σ2IN )−1wk−
1
N

tr(WHPHHWH−Pk |hk |2wk wH
k +σ2IN )−1 a.s.−→ 0.

I Second important result,

Theorem (Rank 1 perturbation Lemma)
Let A ∈ CN×N , x ∈ CN , t > 0, then∣∣∣∣ 1

N
tr(A + t IN )−1 −

1
N

tr(A + xxH + t IN )−1
∣∣∣∣ ≤ 1

tN

I As N grows large,

1
N

tr
(

WHPHHWH − Pk |hk |2wk wH
k + σ2IN

)−1
−

1
N

tr
(

WHPHHWH + σ2IN
)−1

→ 0,

I The RHS is the Stieltjes transform of WHPHHWH in z = −σ2!

mWHPHHWH (−σ2)
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MMSE decoder

I From previous result,
mWHPHHWH (−σ2)−mN (−σ2)

a.s.−→ 0

with mN (−σ2) the unique positive solution of

m =

[
1
N

tr HPHH
(

mHPHH + IK
)−1

+ σ2
]−1

independent of k !
I This is also

m =

σ2 +
1
N

∑
1≤i≤K

Pi |hi |2

1 + mPi |hi |2

−1

I Finally,
γ

(MMSE)
k − Pk |hk |2mN (−σ2)

a.s.−→ 0

and the capacity reads

C(MMSE)(σ2)−
1
K

K∑
k=1

log2(1 + Pk |hk |2mN (−σ2))
a.s.−→ 0.
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MMSE decoder

C(MMSE)(σ2)−
1
K

K∑
k=1

log2(1 + Pk |hk |2mN (−σ2))
a.s.−→ 0.

I AWGN channel, Pk = P, hk = 1,

C(MMSE)(σ2)
a.s.−→ c log2

(
1 +
−(σ2 + (c − 1)P) +

√
(σ2 + (c − 1)P)2 + 4Pσ2

2σ2

)

I Rayleigh channel, Pk = P, |hk | Rayleigh,

m =

[
σ2 + c

∫
Pt

1 + Ptm
e−t dt

]−1

and
CMMSE(σ2)

a.s.−→ c
∫

log2

(
1 + Ptm(−σ2)

)
e−t dt .
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Matched-Filter, Optimal decoder ...

R. Couillet, M. Debbah, J. W. Silverstein, “A Deterministic Equivalent for the Capacity Analysis of
Correlated Multi-User MIMO Channels,” IEEE Trans. on Information Theory, accepted, on arXiv.

I Similarly, we can compute deterministic equivalents for the matched-filter performance,

CMF(σ2)−
1
N

K∑
k=1

log2

(
1 +

Pk |hk |2
1
N
∑K

i=1 Pi |hi |2 + σ2

)
a.s.−→ 0

I AWGN case,

CMF(σ2)
a.s.−→ c log2

(
1 +

P
Pc + σ2

)
I Rayleigh case,

CMF(σ2)
a.s.−→ −c log2(e)e

Pc+σ2
P Ei

(
−

Pc + σ2

P

)
I ... and the optimal joint-decoder performance

Copt(σ
2)− log2

1 +
1
σ2N

K∑
k=1

Pk |hk |2

1 + cPk |hk |2mN (−σ2)

− 1
N

K∑
k=1

log2

(
1 + cPk |hk |2mN (−σ2)

)
− log2(e)

(
σ2mN (−σ2)− 1

)
a.s.−→ 0.

with mN (−σ2) defined as previously.
I Similar expressions are obtained for the AWGN and Rayleigh cases.
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Simulation results: AWGN case
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Figure: Spectral efficiency of random CDMA decoders, AWGN channels. Comparison between simulations and
deterministic equivalents (det. eq.), for the matched-filter, the MMSE decoder and the optimal decoder, K = 16
users, N = 32 chips per code. Rayleigh channels. Error bars indicate two standard deviations.
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Simulation results: Rayleigh case
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Figure: Spectral efficiency of random CDMA decoders, Rayleigh fading channels. Comparison between
simulations and deterministic equivalents (det. eq.), for the matched-filter, the MMSE decoder and the optimal
decoder, K = 16 users, N = 32 chips per code. Rayleigh channels. Error bars indicate two standard deviations.
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Simulation results: Performance as a function of K/N
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Figure: Spectral efficiency of random CDMA decoders, for different asymptotic ratios c = K/N, SNR=10 dB,
AWGN channels. Deterministic equivalents for the matched-filter, the MMSE decoder and the optimal decoder.
Rayleigh channels.
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MIMO-MAC, SINR of the MMSE receiver

R. Couillet, M. Debbah, J. W. Silverstein, “A deterministic equivalent for the capacity analysis of
correlated multi-user MIMO channels,” submitted to IEEE Trans. on Information Theory.

BN =
K∑

k=1

Hk HH
k , with Hk = R

1
2
k Xk T

1
2
k

with Xk ∈ CN×nk with i.i.d. entries of zero mean, variance 1/nk , Rk Hermitian nonnegative
definite, Tk diagonal. Denote ck = N/nk . Then, as all N and nk grow large, with ratio ck ,

1
N

tr(BN − zIN )−1 −
1
N

tr

−z

IN +
K∑

k=1

ēk (z)Rk

−1

a.s.−→ 0

where the set of functions {ei (z)} form the unique solution to the K equations

ei (z) =
1
N

tr Ri

−z

IN +
K∑

k=1

ēk (z)Rk

−1

, ēi (z) =
1
ni

tr Ti
(
−z
[
Ini + ci ei (z)Ti

])−1

Hence, the SINR at the output of the MMSE receiver for user stream i of user k , γik , satisfies

γik = hH
k,i

(
BN − hk,i hH

k,i

)−1
− tk,i ei (−σ2)

a.s.−→ 0.
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Deterministic equivalent approach: guess work

We will use here the “guess-work” method to find the deterministic equivalent. Consider the
simpler case K = 1.
Back to the original notations, we seek a matrix D such that

1
N

tr(BN − zIN )−1 −
1
N

tr D−1 a.s.−→ 0

as N →∞.

Resolvent lemma
For invertible A, B matrices,

A−1 − B−1 = −A−1(A− B)B−1

Taking the matrix differences,

D−1 − (BN − zIN )−1 = D−1(R
1
2 XTXHR

1
2 − zIN − D)(BN − zIN )−1

It seems convenient to take D = −zIN + ēBN R with ēBN left to be defined (the notation BN in ēBN
reminds that we do not look yet for a deterministic quantity).
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Deterministic equivalent approach: guess work (2)
“Silverstein’s” lemma
Let A be Hermitian invertible, then for any vector x and scalar τ such that A + τxxH is invertible

xH(A + τxxH)−1 =
xHA−1

1 + τxA−1xH

With D = −zIN + ēBN R,

D−1 − (BN − zIN )−1 = D−1(R
1
2 XTXHR

1
2 − zIN − D)(BN − zIN )−1

= D−1R
1
2

(
XTXH

)
R

1
2 (BN − zIN )−1 − ēBN D−1R(BN − zIN )−1

= D−1
n∑

j=1

τj R
1
2 xj xH

j R
1
2 (BN − zIN )−1 − ēBN D−1R(BN − zIN )−1

=
n∑

j=1

τj
D−1R

1
2 xj xH

j R
1
2 (B(j) − zIN )−1

1 + τj xHR
1
2 (B(j) − zIN )−1R

1
2 xj

− ēBN D−1R(BN − zIN )−1

Choice of ēBN : ēBN = 1
n
∑n

j=1
τj

1+τj c
1
N tr R(BN−zIN )−1 = 1

n tr T
(

In + T 1
N tr R(BN − zIN )−1

)−1

1
N

tr D−1−
1
N

tr(BN−zIN )−1 =
1
N

n∑
j=1

τj

 xH
j R

1
2 (B(j) − zIN )−1D−1R

1
2 xj

1 + τj xHR
1
2 (B(j) − zIN )−1R

1
2 xj

−
1
n tr R

1
2 (BN − zIN )−1RD−1R

1
2

1 + cτj
1
N tr R

1
2 (BN − zIN )−1
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Ergodic Mutual Information of MIMO-MAC

Remember now that ∫
log(1 + xt)dF (t) =

∫ ∞
1/x

(
1
t
−mF (−t)

)
dt

R. Couillet, M. Debbah, J. W. Silverstein, “A deterministic equivalent for the capacity analysis of
correlated multi-user MIMO channels,” submitted to IEEE Trans. on Information Theory.

Theorem
Under the previous model for BN , as N, nk grow large,

E
[

1
N

log det(xBN + IN )

]
−

 1
N

log det

IN +
K∑

k=1

ēk (−1/x)Rk


+

K∑
k=1

1
N

log det
(
Ink + ck ek (−1/x)Tk

) K∑
k=1

1
N

log det
(

Ink + ck ek (−1/x)T
1
2
k Pk T

1
2
k

)

−
1
x

K∑
k=1

ēk (−1/x)ek (−1/x)

 a.s.−→ 0
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Ergodic sum rate capacity of MIMO-MAC

We look for P?1 , . . . ,P
?
K that achieve the optimal sum rate.

R. Couillet, M. Debbah, J. W. Silverstein, “A deterministic equivalent for the capacity analysis of
correlated multi-user MIMO channels,” submitted to IEEE Trans. on Information Theory.

The deterministic-equivalent maximizing precoders P◦1 , . . . ,P
◦
K satisfy

P◦k = Uk diag(p◦k,1, . . . , p
◦
k,nk

)UH
k , where Tk = Uk diag(tk,1, . . . , tk,nk

)UH
k

and pk,i defined by iterative water-filling as

p◦k,i =

(
µk −

1
e◦k tk,i

)+

with µk such that tr P◦k = Pk , and e◦k defined as ek for (P1, . . . ,PK ) = (P◦1 , . . . ,P
◦
K ).

Moreover, under some conditions,
‖P?k − P◦k ‖ → 0.
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Variance profile

W. Hachem, Ph. Loubaton, J. Najim, “Deterministic equivalents for certain functionals of large
random matrices,” Annals of Applied Probability, vol. 17, no. 3, pp. 875-930, 2007.

Theorem
Let XN ∈ CN×n have independent entries with (i, j)th entry of zero mean and variance 1

nσ
2
ij . Let

AN ∈ RN×n be deterministic with uniformly bounded column norm. Then

1
N

tr
(

(XN + AN )(XN + AN )H − zIN
)−1
−

1
N

tr TN (z)
a.s.−→ 0

where TN (z) is the unique function that solves

TN (z) =
(

Ψ−1(z)− zAN Ψ̃(z)AT
N

)−1
, T̃N (z) =

(
Ψ̃−1(z)− zAT

N Ψ(z)AN

)−1

with Ψ(z) = diag(ψi (z)), Ψ̃(z) = diag(ψ̃i (z)), with entries defined as

ψi (z) = −
(

z(1 +
1
n

tr D̃i T̃(z))

)−1
, ψ̃j (z) = −

(
z(1 +

1
n

tr Dj T(z))

)−1

and Dj = diag(σ2
ij , 1 ≤ i ≤ N), D̃i = diag(σ2

ij , 1 ≤ j ≤ n)
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Variance profile

W. Hachem, Ph. Loubaton, J. Najim, “Deterministic equivalents for certain functionals of large
random matrices,” Annals of Applied Probability, vol. 17, no. 3, pp. 875-930, 2007.

Theorem
For the previous model, we also have that

1
N

E log det
(

IN +
1
σ2

(XN + AN )(XN + AN )H
)

has deterministic equivalent

1
N

log det
[

1
σ2

Ψ(−σ2)−1 + AN Ψ̃(−σ2)AT
N

]
+

1
N

log det
1
σ2

Ψ(−σ2)−1 −
σ2

nN

∑
i,j

σ2
ij Tii (−σ2)T̃jj (−σ2).
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Haar random matrices

M. Debbah, W. Hachem, P. Loubaton, M. de Courville, “MMSE analysis of certain large isometric
random precoded systems”, IEEE Transactions on Information Theory, vol. 49, no. 5, pp.
1293-1311, 2003.

I Recent results were proposed when the matrices XN are unitary and unitarily invariant (Haar
matrices).

I The central result is the trace lemma

Lemma
Let W ∈ CN×n be n < N columns of a Haar matrix and w a column of W. Let BN ∈ CN×N a
random matrix, function of all columns of W except w. Then, assuming that, for growing N,
c = supn n/N < 1 and B = supN ‖BN‖ <∞, we have:

wHBNw−
1

N − n
tr(IN −WWH)BN

a.s.−→ 0.
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Haar random matrices (2)

R. Couillet, J. Hoydis, M. Debbah, “Random beamforming over quasi-static and fading channels: a
deterministic equivalent approach”, to appear in IEEE Trans. on Inf. Theory.

Theorem
Let Ti ∈ Cni×ni be nonnegative diagonal and let Hi ∈ CN×Ni . Define Ri , Hi HH

i ∈ CN×N , ci =
ni
Ni

and c̄i =
Ni
N . Denote

BN =
K∑

i=1

Hi Wi Ti WH
i HH

i .

Then, as N, N1, . . . ,NK , n1, . . . , nK →∞ with ratios bounded c̄i and 0 ≤ ci ≤ 1 for all i , almost
surely

F BN − FN ⇒ 0, with mN (z) =
1
N

tr

 K∑
i=1

ēi (z)Ri − zIN

−1

where (ē1(z), . . . , ēK (z)) are the solutions (conditionally unique) of

ei (z) =
1
N

tr Ri

 K∑
j=1

ēj (z)Rj − zIN

−1

ēi (z) =
1
N

tr Ti
(
ei (z)Ti + [c̄i − ei (z)ēi (z)]Ini

)−1 (compare to i.i.d. case!)
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Signal Sensing in Cognitive Radios
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Position of the Problem

Decide on presence of informative signal or pure noise.

Limited a priori Knowledge
I Known parameters: the prior information I

I N sensors
I L sampling periods
I unit transmit power
I unit channel variance

I Possibly unknown parameters
I M signal sources
I noise power equals σ2

One situation, one solution
For a given prior information I, there must be a unique solution to the detection problem.
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Problem statement

Signal detection is a typical hypothesis testing problem.
I H0: only background noise.

Y = σΘ = σ

θ11 · · · θ1L
...

. . .
...

θN1 · · · θNL


I H1: informative signal plus noise.

Y =

h11 . . . h1M σ · · · 0
...

...
...

...
. . .

...
hN1 . . . hNM 0 · · · σ





s(1)
1 · · · · · · s(L)

1
...

...
...

...
s(1)

M · · · · · · s(L)
M

θ11 · · · · · · θ1L
...

...
...

...
θN1 · · · · · · θNL
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Solution

Solution of hypothesis testing is the function

C(Y) =
PH1|Y(Y)

PH0|Y(Y)
=

PH1 · PY|H1
(Y)

PH0 · PY|H0
(Y)

If the receiver does not know if H1 is more likely than H0,

PH1 = PH0 =
1
2

Therefore,

C(Y) =
PY|H1

(Y)

PY|H0
(Y)
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Odds for hypothesis H0

If the SNR is known then the maximum Entropy Principle leads to

PY|H0
(Y) =

1
(πσ2)NL

e−
1
σ2 tr YYH
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Odds for hypothesis H1

If known N, M, SNR only then

PY|H1
(Y) =

∫
Σ

PY|ΣH1
(Y,Σ)PΣ(Σ)dΣ

=

∫
U(N)×R+N

PY|ΣH1
(Y,U, LΛ)PΛ(Λ)dUdΛ

with

Σ = L

h11 . . . h1M σ · · · 0
...

...
...

...
. . .

...
hN1 . . . hNM 0 · · · σ


h11 . . . h1M σ · · · 0

...
...

...
...

. . .
...

hN1 . . . hNM 0 · · · σ


H

= U (LΛ) UH
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Odds for hypothesis H1 (2)

Case M = 1.
Maximum Entropy distribution for H is Gaussian i.i.d channel. Unordered eigenvalue distribution
for Σ,

PΛ(Λ)dΛ = 1(λ1>σ
2)

1
N

(λ1 − σ2)N−1 e−(λ1−σ2)

(N − 1)!

N∏
i=2

δ(λi − σ2)dλ1 . . . dλN

Maximum Entropy distribution for Y|ΣH1 is correlated Gaussian,

PY|ΣI1 (Y,U, LΛ) =
1

πLN det(Λ)L
e− tr

(
YYH UΛ−1UH

)
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Neyman-Pearson Test

I M = 1,

PY|I1 (Y) =
eσ

2− 1
σ2
∑N

i=1 λi

NπLNσ2(N−1)(L−1)

N∑
l=1

e
λl
σ2∏N

i=1
i 6=l

(λl − λi )
JN−L−1(σ2, λl )

with (λ1, . . . , λN ) = eig(YYH) and

Jk (x , y) =

∫ +∞

x
tk e−t− y

t dt

I From which we have the Neyman-Pearson test

CY|I1 (Y) =
1
N

N∑
l=1

σ2(N+L−1)eσ
2+

λl
σ2∏N

i=1
i 6=l

(λl − λi )
JN−L−1(σ2, λl )

Neyman-Pearson test only depends on the eigenvalues! But in an involved way!
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Neyman-Pearson Test against energy detector, SNR known

1 · 10−3 5 · 10−3 1 · 10−2 2 · 10−2
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

False alarm rate

C
or

re
ct

de
te

ct
io

n
ra

te

Bayesian detector

Energy detector

Figure: ROC curve for SIMO transmission, M = 1, N = 4, L = 8, SNR = −3 dB, FAR range of practical interest.
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Neyman-Pearson Test, Unknown SNR

I We need to integrate out the prior for σ2.
I This leads to

C(Y) =

∫
PY|σ2,I′M

(Y, σ2)Pσ2 (σ2)dσ2∫
PY|σ2,H0

(Y, σ2)Pσ2 (σ2)dσ2

I prior Pσ2 (σ2) is chosen to be
I uniform over [σ2

−, σ
2
+]

I Jeffrey over (0,∞)
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Reminder: the Marcenko-Pastur Law
If H0, then the eigenvalues of 1

N YYH asymptotically distribute as
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Figure: Marcenko-Pastur law with c = lim N/L.
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Alternative Tests in Large Random Matrix Theory

Z. D. Bai, J. W. Silverstein, “No eigenvalues outside the support of the limiting spectral distribution
of large-dimensional sample covariance matrices,” The Annals of Probability, vol. 26, no.1 pp.
316-345, 1998.

Theorem

P(no eigenvalues outside [σ2(1−
√

c)2, σ2(1 +
√

c)2] for all large N) = 1

I If H0,
λmax( 1

N YYH)

λmin( 1
N YYH)

a.s.−→
(1 +

√
c)2

(1−
√

c)2

I independent of the SNR!
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Conditioning Number Test

L. S. Cardoso, M. Debbah, P. Bianchi, J. Najim, “Cooperative spectrum sensing using random
matrix theory,” International Symposium on Wireless Pervasive Computing, Santorini, Greece,
2008.

I conditioning number test

Ccond(Y) =
λmax( 1

N YYH)

λmin( 1
N YYH)

I if Ccond(Y) > τ , presence of a signal.
I if Ccond(Y) < τ , absence of signal.
I but this is ad-hoc! how good does it compare to optimal?
I can we find non ad-hoc approaches?
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Alternative Tests in Large Random Matrix Theory (2)

Bianchi, J. Najim, M. Maida, M. Debbah, “Performance of Some Eigen-based Hypothesis Tests for
Collaborative Sensing,” Proceedings of IEEE Statistical Signal Processing Workshop, 2009.

Generalized Likelihood Ratio Test
I Alternative test to Neyman-Pearson,

CGLRT(Y) =
supH,σ2 PH1|Y,H,σ2 (Y)

supσ2 PH0|Y,σ2 (Y)

I based on ratios of maximum likelihood
I clearly sub-optimal but avoid the need for priors.

I GLRT test

CGLRT(Y) =

(1−
1
N

)N−1 λmax( 1
N YYH)

1
N
∑N

i=1 λi

(
1−

λmax( 1
N YYH)∑N

i=1 λi

)N−1
−L

.

I Contrary to the ad-hoc conditioning number test, GLRT based on

λmax
1
N tr(YYH)
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Neyman-Pearson Test against Asymptotic Tests
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Figure: ROC curve for a priori unknown σ2 of the Bayesian method, conditioning number method and GLRT
method, M = 1, N = 4, L = 8, SNR = 0 dB. For the Bayesian method, both uniform and Jeffreys prior, with
exponent α = 1, are provided.
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Position of the problem

I it has long been difficult to analytically invert the simplest BN = T
1
2
N XNXH

NT
1
2
N model to recover

the diagonal entries of TN . Indeed, we only have the deterministic equivalent result

mN (z) =

(
−z + c

∫
t

1 + tmN (z)
dF TN (t)

)−1

with mN the deterministic equivalent of the Stieltjes transform for BN = XH
NTNXN .

I when TN has eigenvalues t1, . . . , tK with multiplicity n1, . . . , nK , this is

mN (z) =

−z +
1
N

K∑
k=1

nk
tk

1 + tk mN (z)

−1

I an N, n-consistent estimator for the tk ’s was never found until recently...
I however, moment-based methods and free probability approaches provide simple solutions to

estimate consistently all moments of F TN .
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Free Deconvolution Approach: Reminders
I For free random matrices A and B, we have the cumulant/moment relationships,

Ck (A + B) = Ck (A) + Ck (B)

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏
V1∈π1
V2∈π2

C|V1|(A)C|V2|(B)

I this allows one to compute all moments of sum and product distributions

µA � µB, µA � µB

I in addition, we have results for the information-plus-noise model

BN =
1
n

(RN + σXN ) (RN + σXN )H

whose e.s.d. converges weakly and almost surely to µB such that

µB =
(
(µΓ � µc) � δσ2

)
� µc

with µc the Marucenko-Pastur law and ΓN = RNRH
N .

I all basic matrix operations needed in wireless communications are accessible for convenient
matrices (Gaussian, Vandermonde etc.)

I all operations are merely polynomial operations on the moments. As a consequence, for
BN = f (RN ),

All moments of the l.s.d. of BN are obtained as polynomials of those of the l.s.d. of RN
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From free convolution to free deconvolution

Ø. Ryan, M. Debbah, “Multiplicative free convolution and information-plus-noise type matrices,”
Arxiv preprint math.PR/0702342, 2007.

I The k th moment of the l.s.d. of BN is a polynomial of the k -first moments of the l.s.d. of RN .
I we can therefore invert the problem and express the k th moment of RN as the first k moments of BN .

This entails deconvolution operations,

µA = µA+B � µB

µA = µAB � µB

and for the information-plus-noise model, BN = 1
n (RN + σXN ) (RN + σXN )H

µΓ =
(

(µB � µc) � δ
σ2
)

� µc

I for more involved models, the polynomial relations can be iterated and even automatically
generated.
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Example of polynomial relation
I Consider the information-plus-noise model

Y = D + X

with Y ∈ CN×n, D ∈ CN×n, X ∈ CN×n with i.i.d. entries of mean 0 and variance 1. Denote

Mk = lim
n→∞

1
n

tr(
1
N

YYH)k

Dk = lim
n→∞

1
n

tr(
1
N

DDH)k

I For that model, we have the relations

M1 = D1 + 1

M2 = D2 + (2 + 2c)D1 + (1 + c)

M3 = D3 + (3 + 3c)D2 + 3cD1
2 + (1 + 3c + c2)

hence

D1 = M1 − 1

D2 = M2 − (2 + 2c)M1 + (1 + c)

D3 = M3 − (3 + 3c)M2 − 3cM1
2 + (6c2 + 18c + 6)M1 − (4c2 + 12c + 4)
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Free deconvolution: Eigenvalue Inference

I For practical finite size applications, the deconvolved moments will exhibit errors. Different
strategies are available,

I direct inversion with Newton-Girard formulas. Assuming perfect evaluation of 1
K
∑K

k=1 Pm
k ,

P1, . . . ,PK are given by the K solutions of the polynomial

X K − Π1X K−1 + Π2X K−2 − . . .+ (−1)K ΠK

where the Πm ’s (known as the elementary symmetric polynomials) are iteratively defined as

(−1)k kΠk +
k∑

i=1

(−1)k+i Si Πk−i = 0

where Sk =
∑k

i=1 Pk
i .

I may lead to non-real solutions!
I does not minimize any conventional error criterion
I convenient for one-shot power inference
I when multiple realizations are available, statistical solutions are preferable



Random Matrix Theory and Statistical InferenceFree Probability Method 87/113

Free deconvolution: inferring powers

I alternative approach: estimators that minimize conventional error metrics

Z. D. Bai, J. W. Silverstein, “CLT of linear spectral statistics of large dimensional sample
covariance matrices,” Annals of Probability, vol. 32, no. 1A, pp. 553-605, 2004.

I for the model Y = T
1
2 X, an asymptotic central limit result is known for the moments, i.e. for

M(N)
k the order k empirical moment of 1

N YYH and Mk its limit, as N →∞,

N
(

M(N)
k −Mk

)
⇒ X

where X is a central Gaussian random variable.
I then maximum-likelihood or MMSE estimators can then be used to find the moments of T.
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The Stieltjes Transform Method

I Consider the sample covariance matrix model

Y∆
=T

1
2 X ∈ CN×n, BN =

1
n

YYH ∈ CN×N , BN =
1
n

YHY ∈ Cn×n

where T ∈ CN×N has eigenvalues t1, . . . , tK , tk with multiplicity Nk and X ∈ CN×n is i.i.d. zero
mean, variance 1.

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” J. of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.

I If F T ⇒ T , then mFBN (z) = mBN (z)
a.s.−→ mF (z) such that

mT
(
−1/mF (z)

)
= −zmF (z)mF (z)

with mF (z) = cmF (z) + (c − 1) 1
z and N/n→ c.
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Complex integration
I From Cauchy integral formula, denoting Ck a contour enclosing only tk ,

tk =
1

2πi

∮
Ck

ω

ω − tk
dω =

1
2πi

∮
Ck

1
Nk

K∑
j=1

Nj
ω

ω − tj
dω =

N
2πiNk

∮
Ck

ωmT (ω)dω.

I After the variable change ω = −1/mF (z),

tk =
N
Nk

1
2πi

∮
CF,k

zmF (z)
m′F (z)

m2
F (z)

dz,

I When the system dimensions are large,

mF (z) ' mBN (z)
∆
=

1
N

N∑
k=1

1
λk − z

, with (λ1, . . . , λN ) = eig(BN ) = eig(YYH).

I Dominated convergence arguments then show

tk − t̂k
a.s.−→ 0 with t̂k =

N
Nk

1
2πi

∮
CF,k

zmBN (z)
m′BN

(z)

m2
BN

(z)
dz =

n
Nk

∑
m∈Nk

(λm − µm)

with Nk the indexes of cluster k and µ1 < . . . < µN are the ordered eigenvalues of the matrix
diag(λ)− 1

n

√
λ
√
λ

T
, λ = (λ1, . . . , λN )T.
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Application Context: Coverage range in Femtocells
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Problem statement

I a device embedded with N antennas receives a signal
I originating from multiple sources
I number of sources K is not necessarily known
I source k is equipped with nk antennas (ideally nk >> 1)
I signal k goes through unknown MIMO channel Hk ∈ CN×nk

I the variance σ2 of the additive noise is not necessarily known
I the problem is to infer

I P1, . . . ,PK knowing K , n1, . . . , nK
I P1, . . . ,PK and n1, . . . , nK knowing K
I K , P1, . . . ,PK and n1, . . . , nK

I we will regard the problem under the angle of
I free deconvolution: i.e. from the moments of the receive YYH, infer those of P, and infer on P
I Stieltjes transform: i.e. from analytical formulas on the asymptotic eigenvalue distribution of YYH, we

derive consistent estimates of each Pk .
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System model

I at time t , source k transmit signal x(t)
k ∈ Cnk with i.i.d. entries of zero mean and variance 1.

I we denote Pk the power emitted by user k
I the channel Hk ∈ CN×nk from user k to the receiver has i.i.d. entries of zero mean and

variance 1/N.
I at time t , the additive noise is denoted σw(t), with w(t) ∈ CN with i.i.d. entries of zero mean

and variance 1.
I hence the receive signal y(t) at time t ,

y(t) =
K∑

k=1

Hk
√

Pk x(t)
k + σw(t)

k

Gathering M time instant into Y = [y(1) . . . y(M)] ∈ CN×M , this can be written

Y =
K∑

k=1

Hk
√

Pk Xk + σW = HP
1
2 X + σW

with H = [H1 . . .HK ] ∈ CN×n, n =
∑K

k=1 nk ,
P = diag(P1, . . . ,P1,P2, . . . ,P2, . . . ,PK , . . . ,PK ) where Pk has multiplicity nk on the
diagonal, XH = [XH

1 . . .X
H
K ]H ∈ Cn×M , Xk = [x(1)

k . . . x(M)
k ] ∈ Cnk×M , W defined similarly.
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Reminder on free deconvolution
I Free probability provides tools to compute

dk =
1
K

K∑
i=1

λ(P)k =
1
K

K∑
i=1

Pk
i

as a function of

mk =
1
N

N∑
i=1

λ(
1
M

YYH)k

I One can obtain all the successive sum powers of P1, . . . ,PK .
I From that, we can infer on the values of each Pk !
I The tools come from the relations,

I cumulant to moment (and also moment to cumulant),

Mn =
∑

π∈NC(n)

∏
V∈π

C|V|

I Sums of cumulants for asymptotically free A and B (of measure µA � µB ),

Ck (A + B) = Ck (A) + Ck (B)

I Products of cumulants for asymptotically free A and B (of measure µA � µB ),

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏
V1∈π1
V2∈π2

C|V1|(A)C|V2|(B)

I Moments of information plus noise models BN = 1
n (AN + σWN ) (AN + σWN )H,

µB =
(

(µA � µc) � δ
σ2
)
� µc

with µc the Marcenko-Pastur law with ratio c.
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Free deconvolution approach

I one can deconvolve YYH in three steps,
I an information-plus-noise model with “deterministic matrix” HP

1
2 XXHP

1
2 HH,

YYH = (HP
1
2 X + σW)(HP

1
2 X + σW)H

I from HP
1
2 XXHP

1
2 HH, up to a Gram matrix commutation, we can deconvolve the signal X,

P
1
2 HHHP

1
2 XXH

I from P
1
2 HHHP

1
2 , a new matrix commutation allows one to deconvolve HHH

PHHH
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Free deconvolution operations

In terms of free probability operations, this is
I noise deconvolution

µ
1
M HP

1
2 XXHP

1
2 HH

=
(

(µ 1
M YYH � µc) � δσ2

)
� µc

with µc the Marcenko-Pastur law and c = N/M.
I signal deconvolution

µ
1
M P

1
2 HHHP

1
2 XXH

=
N
n
µ

1
M HP

1
2 XXHP

1
2 HH

+

(
1−

N
n

)
δ0

I channel deconvolution
µP = µP 1

n HHH � µηc1

with c1 = n/N
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Free deconvolution: moments
I from the three previous steps (plus addition of null eigenvalues), the moments of P can be

computed from those of YYH.
I this process can be automatized by combinatorics softwares
I finite size formulas are also available
I the first moments mk of 1

M YYH as a function of the first moments dk of P read

m1 = N−1nd1 + 1

m2 =
(

N−2M−1n + N−1n
)

d2 +
(

N−2n2 + N−1M−1n2) d2
1

+
(

2N−1n + 2M−1n
)

d1 +
(

1 + NM−1)
m3 =

(
3N−3M−2n + N−3n + 6N−2M−1n + N−1M−2n + N−1n

)
d3

+
(

6N−3M−1n2 + 6N−2M−2n2 + 3N−2n2 + 3N−1M−1n2) d2d1

+
(

N−3M−2n3 + N−3n3 + 3N−2M−1n3 + N−1M−2n3) d3
1

+
(

6N−2M−1n + 6N−1M−2n + 3N−1n + 3M−1n
)

d2

+
(

3N−2M−2n2 + 3N−2n2 + 9N−1M−1n2 + 3M−2n2) d2
1

+
(

3N−1M−2n + 3N−1n + 9M−1n + 3NM−2n
)

d1

where

mk =
1
N

N∑
i=1

λ(
1
M

YYH)k and dk =
1
K

K∑
i=1

λ(P)k =
1
K

K∑
i=1

Pk
i
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Free deconvolution: inferring powers

Direct inversion with Newton-Girard formulas. Assuming perfect evaluation of 1
K
∑K

k=1 Pm
k ,

P1, . . . ,PK are given by the K solutions of the polynomial

X K − Π1X K−1 + Π2X K−2 − . . .+ (−1)K ΠK

where the Πm ’s (known as the elementary symmetric polynomials) are iteratively defined as

(−1)k kΠk +
k∑

i=1

(−1)k+i Si Πk−i = 0

where Sk =
∑k

i=1 Pk
i .

I may lead to non-real solutions!
I does not minimize any conventional error criterion
I convenient for one-shot power inference
I when multiple realizations are available, statistical solutions are preferable
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Stieltjes transform approach

I Remember the matrix model
Y = HP

1
2 X + σW

with W,Y ∈ CN×M , H ∈ CN×n, X ∈ Cn×M , and P ∈ Cn×n diagonal.
I this can be written in the following way

Y =
[
HP

1
2 σI

] [X
W

]
∈ CN×M

and extend it into the matrix

Yext =

[
HP

1
2 σI

0 0

][
X
W

]
∈ C(N+n)×M

which is a sample covariance matrix model.
I the population covariance matrix is (

HPHH + σ2IN 0
0 0

)
itself a sample covariance matrix.
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Asymptotic spectrum

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-inference Energy Estimation of Multiple
Sources”, IEEE Trans. on Information Theory, 2010, submitted.

I the asymptotic spectrum of 1
M YYH has Stietljes transform m(z), z ∈ C+, such that

m(z) =
M
N

m(z) +
M − N

N
1
z

where m(z) is the unique solution in C+ of

1
m(z)

= −σ2 +
1

f (z)
−

1
N

K∑
k=1

nk Pk

1 + Pk f (z)

where f (z) is given by

f (z) =
M − N

N
m(z)−

M
N

zm(z)2

and we want to determine Pk .
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Asymptotic spectrum of 1
M YYH
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Figure: Empirical and asymptotic eigenvalue distribution of 1
M YYH when P has three distinct entries P1 = 1,

P2 = 3, P3 = 10, n1 = n2 = n3, N/n = 10, M/N = 10, σ2 = 0.1. Empirical test: n = 60.
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Stieltjes transform approach: final result

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-inference Energy Estimation of Multiple
Sources”, IEEE Trans. on Information Theory, 2010, submitted.

Theorem
Let BN = 1

M YYH ∈ CN×N , with Y defined as previously. Denote its ordered eigenvalues vector
λ = (λ1, . . . , λN ), λ1 < . . . , λN . Further assume asymptotic spectrum separability. Then, for
k ∈ {1, . . . ,K}, as N, n, M grow large, we have

P̂k − Pk
a.s.−→ 0

where the estimate P̂k is given by

P̂k =
NM

nk (M − N)

∑
i∈Nk

(ηi − µi )

with Nk = {N −
∑K

i=k ni + 1, . . . ,N −
∑K

i=k+1 ni} the set of indexes matching the cluster

corresponding to Pk , (η1, . . . , ηN ) the ordered eigenvalues of diag(λ)− 1
N

√
λ
√
λ

T
and

(µ1, . . . , µN ) the ordered eigenvalues of diag(λ)− 1
M

√
λ
√
λ

T
.
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Comments on the result

I very compact formula
I low computational complexity
I assuming cluster separation, it allows also to infer the number of eigenvalues, as well as the

multiplicity of each eigenvalue.
I however, strong requirement on cluster separation
I if separation is not true, the mean of the eigenvalues instead of the eigenvalues themselves is

computed.
I it is possible to infer K , all nk and all Pk using the Stieltjes transform method.
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Multi-Source Power Estimation: Performance Comparison
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Figure: Multi-source power estimation, for K = 3, P1 = 1,P2 = 3,P3 = 10, n1/n = n2/n = n3/n = 1/3
,n/N = N/M = 1/10, SNR = 10 dB, for 10, 000 simulation runs; Top n = 60, bottom n = 6.
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Multi-Source Power Estimation: Performance Comparison
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Figure: Normalized mean square error of the vector (P̂1, P̂2, P̂3), P1 = 1,P2 = 3,P3 = 10,
n1/n = n2/n = n3/n = 1/3 ,n/N = N/M = 1/10, for 10, 000 simulation runs.
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General comments and steps left to fulfill

I up to this day
I the moment approach is much simpler to derive
I it does not require any cluster separation
I the finite size case is treated in the mean, which the Stieltjes transform approach cannot do.
I however, the Stieltjes transform approach makes full use of the spectral knowledge, when the

moment approach is limited to a few moments.
I the results are more natural, and more “telling”

I in the future, it is expected that the cluster separation requirement can be overtaken.
I a natural general framework attached to the Stieltjes transform method could arise
I central limit results on the estimates is expected
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Detailed outline

Romain Couillet, Mérouane Debbah, Random Matrix Methods for Wireless Communications.
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