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Social dynamics

ICT-based 
social-communities

Techno-social systems



New ICT-driven opportunities

Web as a laboratory for social sciences
opinions formation
consumers behaviors, marketing strategies
cultural trends, globalization
birth and evolution of communication systems
language evolution
...

Understand and control information dynamics
social annotations, social bookmarking
search engines
recommendation systems
collaborative editing (wiki, blogs, forum, ...)
collaborative filtering
...

Raise awareness and participation
Monitoring of common resources and environment
Monitoring of societies 
Feedback to policy makers
Sustainable development
...
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1989-1991

1991-2000

1998

2000

2000-2004

2005

the Semantic Web vision by T. Berners-Lee

WWW is created at CERN

users become content providers,
rise of online communities

“bottom-up” information architecture

mass adoption, users are consumers, 
taxonomic approach

Google is born

a short history of the web
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 the behavior of users is “selfish”, but
 they are exposed to each other’s 
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linguistics

computer
science

complex
systems

• statistical physics
• self-organization
• pattern formation
• growth processes
• complex networks
• stochastic processes
• agent-based models

• semantic networks
• symbol grounding
• emergence of conventions

• information retrieval
• ontology learning
• artificial intelligence
• distributed systems
• algorithms

research fields
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social adoption of a tag

ajax

article first introducing the term “ajax” gets published
8 months

http://blog.pietrosperoni.it/2005/05/28/tagclouds-and-cultural-changes/
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a Yule-Simon model with memory 
• start with n0 words
• at time t :  with probability p, a new word is appended
• with probability 1-p, a word is copied from position t-x
• x is distributed according to a fat-tailed memory kernel Q(x)

t-xnew

p

1-p

x

...t-9t-8t-7t-6t-5t-4t-3t-2t-1

Qt(x) ∼
1

x + τ

ln x



tag frequencies: data vs model
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modelling structural properties

➡ C. Cattuto, A. Barrat, A. Baldassarri, G. Schehr and VL
“Collective dynamics of social annotation”
PNAS 106, 10511 (2009)
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Figure 3: Synthetic data produced through the proposed mechanism. a) Growth of the number

of distinct visited sites as a function of the number of random walks performed on a Watts-

Strogatz network (see Methods) of size 5 · 104 nodes and average degree 8, rewiring probability

p = 0.1. Each random walk has a random length l taken from a distribution P (l) ∼ l−3. The

dotted line corresponds to a linear growth law while the continuous line is a power-law growth

with exponent 0.7. b) Frequency-rank plot. The continuous and dashed line have slope −1.3

and −1.5, respectively. c) and d) Properties of the synthetic co-occurrence network obtained

for nRW = 5 · 104, to be compared with the empirical data of Fig. 1.
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Figure 1: Data corresponding to the posts containing the tag ”Folksonomy” in del.icio.us. a) Heaps’

law: growth of the vocabulary size associated with the tag t∗ =”Folksonomy”, measured as the number

of distinct tags co-occurring with t∗, as a function of the number nposts of posts containing t∗. The dotted

line corresponds to a linear growth law while the continuous line is a power-law growth with exponent

0.7. b) Frequency-rank plot of the tags. The dashed line corresponds to a power-law −1.42 " −1./0.7.

c) and d) Properties of the co-occurrence network of the tags co-occurring with the tag ”Folksonomy”

in del.icio.us, built as described in the main text. c) Broad distributions of degrees k, strengths s and

weights w are observed. The inset shows the average strength of nodes of degree k, with a superlinear

growth at large k. d) Weighted (kw
nn) and unweighted (knn) average degree of nearest neighbors (top), and

weighted (Cw) and unweighted (C) average clustering coefficients of nodes of degree k. knn displays a

disassortative trend, and a strong clustering is observed. At small k, the weights are close to 1 (s(k) ∼ k,

see inset of B), and kw
nn ∼ knn, Cw ∼ C . At large k instead, kw

nn > knn and Cw > C , showing that

large weights are preferentially connecting nodes with large degree: large degree nodes are joined by

links of large weight, i.e. they co-occur frequently together. In C) and D) both raw and logarithmically

binned data are shown. 13
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Comparison with real systems
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Figure 3: Synthetic data produced through the proposed mechanism. a) Growth of the number

of distinct visited sites as a function of the number of random walks performed on a Watts-

Strogatz network (see Methods) of size 5 · 104 nodes and average degree 8, rewiring probability

p = 0.1. Each random walk has a random length l taken from a distribution P (l) ∼ l−3. The

dotted line corresponds to a linear growth law while the continuous line is a power-law growth

with exponent 0.7. b) Frequency-rank plot. The continuous and dashed line have slope −1.3

and −1.5, respectively. c) and d) Properties of the synthetic co-occurrence network obtained

for nRW = 5 · 104, to be compared with the empirical data of Fig. 1.
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short summary

Social bookmarking systems are interesting because they 
encode, in an unpredictable way, traces of the cognitive 
abilities of human beings: emergent semantics

 understanding users’ behaviour
 individual vs. collective (cooperative) features
 modeling tag invention rate 
 structure/evolution of the co-occurrence networks
 latent hierarchies & semantics
 measures of node relatedness and similarity

(just a few) open questions



Web as a laboratory for social sciences

opinions formation
consumers behaviors, marketing strategies
cultural trends, globalization
birth and evolution of communication systems
language evolution
...



Populations of users facing 
collectively

difficult problems using a 
small cognitive overhead

Social computation



• collaborative tagging and folksonomies
• online collaborative games

• collaborative filtering

• recommendation/trust networks

• crowdsourcing

http://www.espgame.org/

Populations of users facing 
collectively

difficult problems using a 
small cognitive overhead

Social computation

http://www.peekaboom.org
http://www.peekaboom.org




The human computer

“Before the computers 
were machines they 
were persons”

 D.A. Grier





p-beauty contest

Task: select a  number in [0:100]

Winner: player closest to p ∗ AV ERAGE

p = 1/2



A new platform for web-based experiments



A new platform for web-based experiments

http://www.xtribe.eu/

http://www.xtribe.eu/
http://www.xtribe.eu/
http://www.xtribe.eu/
http://www.everyaware.eu
http://www.everyaware.eu


Experimental Tribe (ET) is general purpose platform for 
social computation and web-based experiments



Experimental Tribe (ET) is general purpose platform for 
social computation and web-based experiments

it will allow virtually any researcher to realize 
his own experiment with minimal effort, paving 
the way of the use of the web as a standard 
“laboratory” for social sciences. 



Experimental Tribe (ET) is general purpose platform for 
social computation and web-based experiments

it will allow virtually any researcher to realize 
his own experiment with minimal effort, paving 
the way of the use of the web as a standard 
“laboratory” for social sciences. 

it can be a strong “basin of attraction” for 
people willing to participate to experiments, 
making in this way recruitment much easier than 
for single-experiment platforms.



Experimental Tribe (ET) is general purpose platform for 
social computation and web-based experiments

it will allow virtually any researcher to realize 
his own experiment with minimal effort, paving 
the way of the use of the web as a standard 
“laboratory” for social sciences. 

it can be a strong “basin of attraction” for 
people willing to participate to experiments, 
making in this way recruitment much easier than 
for single-experiment platforms.

research areas: opinion and language dynamics, 
decision making, game-theory, human mobility, 
economics, psychology, etc...































Raise awareness and participation

Monitoring of common resources and environment
Monitoring of societies 
Feedback to policy makers
Sustainable development
...



EveryAware
Enhance environmental awareness 

through social information technologies
http://www.everyaware.eu/

http://www.everyaware.eu
http://www.everyaware.eu


objective/subjective monitoring

enhanced awareness

change of individual behaviours

pressure on policy 
making

development of new ICT tools

“Tell me, I forget. 
Show me, I remember. 
Involve me, I understand.“

 Chinese proverb

EveryAware concept



Citizen Science

...individual volunteers or networks of 
volunteers, many of whom may have no 
specific scientific training, perform or 
manage research-related tasks such as 
observation, measurement or computation.



Figure 1: Interface device used for the Pygmie Community Memory devel-
oped by Jerome Lewis. It aids in the management of areas in the Congo
rainforest.

10
Lewis, J. From abundance to scarcity. indigenous resource management 
and the industrial extraction of forest resources. some issues for 
conservation. African Studies Seminar, Edinburgh. (2004). 

GPS helps Pygmies 
defend forest

J. Lewis (UCL)



Temperature/humidity

Temperature

MagneticChemical
 NO2, NO, ozone, CO. CO2

Movement

Turn users into sensors



Objective vs. Subjective monitoring

Opinions
Perceptions
Impressions

Personal Experiences

Measured 
Quantities

participatory 
sensing



data 
management

geolocation 
and 

geographic 
mapping

participatory 
sensing opinion 

dynamics 
/// 

decision 
making

complex 
systems 

modeling

Main themes
social 

computation



The EveryAware platform





Sensor 
box
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Objective data
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GPS, accelerometers
Temperature, humidity
Noise
Air quality (NOx, Ozone, CO, ...) 
e.m sensors, geiger

Objective data

Server

Subjective data
Tags
Annotation
Votes
Comments

Sensor 
box



Different scales

Users with 
sensor box
(air quality)
~200-300

Users with 
smartphones

(noise pollution)
~1000-10000

Web users
Web games
Opinions



Turin

London

Rome

Bruxelles
Antwerp

Case studies



http://cs.everyaware.eu/event/widenoise

http://www.everyaware.eu
http://www.everyaware.eu




Objective monitoring



Objective monitoring



Objective monitoring

Prediction



Objective monitoring

Prediction

Actual measure



Objective monitoring

Prediction

Actual measure



Subjective monitoring



Subjective monitoring



Subjective monitoring

Sliders



Subjective monitoring

Sliders



Subjective monitoring

Sliders

Tags







Air quality monitoring

case study on 









 monitor personal exposure

  extract relevant and reliable environmental information

 investigate and stimulate fundamental shifts in public 
opinion

 stimulate an efficient usage of shared resources

Main objectives
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Stefano Ingarra (CSP)
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