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Goal-Leaders: enhancing robots’
goal-directedness and proactivity




Brain “information processing” is dominated by
endogenously determined motivations, predictions
and goals, and processes that prepare to action

Cascading effects on perception, memory, attention,
monitoring, behavior, etc.

In turn, this sensorimotor loop affects internal processing
(drive and goal setting, action selection, prediction, etc.)



Brains, goal-directedness and autonomy
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Affordance competition hypothesis Free energy principle and
predictive coding
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Many others: predictive brain, Bayesian brain, ideomotor principle, sensorimotor
theories, model-based reinforcement learning in neuroeconomics, etc.




Goal-directed vs. habitual behavior
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Project Objective:
Adaptive Builder Robots




The robot is required to

_ ml W \] | assemble a construction by
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Realize a set of externally assigned tasks (e.g., fetching objects, clearing an
area, composing building parts)

Maintain homeostatic drives in safe range (e.g., never remain without
energy, not get hurt)

Combinatorial tasks, subgoaling, cognitive control (e.g., finding and
stacking objects to compose a given construction)

Proactivity (e.g., store useful building parts, predict loss of energy and
recharge before starting a long task)



We need breakthroughs in robots’
goal-directedness and proactivity




1. Enhancing robots’ goal-directedness

Learning increasingly sophisticated Our starting point:
goals and goal-achieving strategies Distributed adaptive control (DAC)
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Drive: having stable Represents objects in terms of

structure, tall structure =~ how much they support other
objects (cubes vs. sphere; big

Reactive behavior: objects down, small objects on

stackine ton). Obiects / place value

Goal states: “Towers”, “bridges”

Strategies for efficient assembling
of constructions, storing of useful
obiects. subesoaline



Prediction,

mental simulation
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A few achievements so far




Prospective coding in the rat
hippocampus (CA3): forward
sweeps at decision points

Reward-predictive cues modulate firing
patterns of hippocampal and striatal

neurons

Johnson and Redish (2007)

The rats position is indicated by the white circle. The reddish
areas indicate the firing rate of hippocampal neurons with place
fields at that particular point of the maze.
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Lansink et al. (in prep)



Goal-directed decision-making:
hippocampal replay for accessing reward info in the striatum
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Neural circuit for the affective labeling
of spatial representations

Chersi, Pezzulo (in prep.)




Goal-directed decision-making:
hippocampal replay for accessing reward info in the striatum

Neural circuit for the affective labeling The neural circuit at work
of spatial representations
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Chersi, Pezzulo (in prep.)




Balance between goal-directed vs. habitual choice
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A mixed 1nstrumen’Eal controll(?r th.at Stable environment: habituation
solves an exploration-exploitation R ——

dilemma, trading off the costs of B
mental simulations with the value of i
information it produces
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Demo @ FET 11, Warsaw:
a catering assistant autonomous robot

Integration of two loops:
goal-directed navigation and
face detection
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Hippocampal place fields modeling

Emerging single place field without
plasticity using a spiking model

César Renno-Costa’, John E. Lisman?, Paul F.M.J Verschure’?
SPECS, Univesitat Pompeu Fabra, Barcelona, Spain; 2. Brandeis University, Boston, USA; 3. ICREA, Barcelona, Spain

Introduction

Mean-field model emerges place fields instantaneously -
and without plasticity - from the input of grid cells, found
upstream in the medial entorhinal cortex.

Model based on two mechanisms: the integration of
massive convergent input and feedback inhibition, which *
is translated to the E%-MAX-WTA competition rule.
Hierarchical topology can explain the formation of
multiple place fields in the dentate gyrus and single pla

The Model

* Three layered network based on the hip,
the entorhinal cortex, the dentate gyrus
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eVactivity of the entorhinal cortex neurons at a certain

ime is set accordingly to the position of the virtual rat in a
pre-defined trajectory. The activity of each cell mimics a grid
cell with specific scale and spatial and angular offset. Though
the model, the activity of the DG and CA3 neurons is
computed.
Spike activity is confronted with the position to obtain
standard place cell analysis.
Rate map analysis shows that the entorhinal cells exhibit
grid cell formation. Place cells can be observed in both
dentate gyrus and CA3 populations.
A higher number of place fields per cell have been observed
on the dentate gyrus.

Conclusion

* Results show that the spike model produces similar results to
the mean-field model.

+ This establishes a checkpoint for further studies that might
depend on spiking data such as well-timed features of the
spatial code like phase precession and spike coincidence and
to include other physiological facts such as the auto-
associative connections in the CA3.
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fields in the downstream region CA3.

Can explain how place fields are affected by
environmental changes in the rate remapping phenomena
‘when non-spatial

tis considered.

ility of this model to more complex
e-dependence, we've developed
inciples with spiking neurons
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Figure 1: model hierarchy: from grid cells to place cells
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Figure 2: rate maps from grid cells and non-spatial cells

Figure 3: multiple place fields in the DG
and single in the CA3
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Figure 4: rate remapping in two DG cells

Reference

L de Almeida, M. idrt, and J. € Usman, “A second function of gamma freauency

ciions. an £% o winner-take- mechansm selects which ceds ve..” The Journst of

Newroscience, 29123, p. 7437503, 2009.

L e Aimeids, M. idart, 3nd 1. €. Usman, “The ingut-output transdormation of the
%) »

(23),pp. 750412, 2000

€ Rened Conta, . €. Usman, a0 .. M. . Verschure, “The
i the destate fys.” Newros, 636), 3. 10518, 2010

Lisman, Verschure




Predicting objects dynamics

Hesslow (2002) suggested that the brain simulates the future by first
learning the expected outcome of an action or event and then uses this as
input for a new prediction. As the proce; peated multiple times, the
brain is able to simulate future conse c action.Here we apply
this idea to the understanding mical sdBhes where a system for
prediction is converted into on

s To investigate system iction can be used for simulation we
_.' implemented ework Mustrated in the figure below. This frame-
N work col modules that interact with each other and with the

An example of prediction in a two
dimensional environment. The  la
black circle is the ball being trackey

gray dots are the predictions gnd

of how future obstacles,

Stato_State Change _ Event Descrigion

The model was implemented using the Ikaros system (Balkenius et al.
2010) where each of the components of the model were implemented as
a separate module. A module reads data from its input connections in
discrete time and generates new output at discrete intervals, usually
referred to as ticks. These ticks can be locked to real-time when the system
is used to control a robot and thus supports a seamless transition from
simulation to a real robot.

The model predicts how a ball wil fall
down while bouncing on some obsta- e tested the accuracy of the predictions in a computer simulation using

cles. the open source physics engine Box2d (www.box2d.org). The simulated

world was a two dimensional environment observed form the horizontal
perspective, meaning that gravity pulled any objects down. A ball was
launched from one of the edges of the world and as soon as the ball
moved outside the boundaries of the world it was placed at a new start-
ing position.

C.Balkenius, J. Morén, B. Johansson, and M. Johnsson, Ikaros: Building cognitive models for robots,
Advanced Engineering Informatics, 24, 1,40-48, 2010.

G. Hesslow, Conscious thought as simulation of behaviour and perception, Trends in Cognitive
Sciences, 6,6,242-247,2002.
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Vision hierarchies modulated by value

We present a system-level computational model of visual learning and
attention. The hexagons represent different cortical regions that are
controlled by a central system consisting of subsystems for stimulus
evaluation (S¥), response evaluation (R¥) as well as contextual modulation
of Iearnlng and proceslng (CX).The central system Ris responsible for the

aps, convolutional networks and principal
Top Left. Input image. Top Right. alysis, a hlerarchlcal network with an arbitrary number of
Reconstructed input from top-down anize from input data consisting of natural images.The
attention ~ signals. Bottom  Left. N . N
Learned receptive fields. Bottom al system is capable of both bottom-up analysis and top-down

layer of the hierarchy. The

° stem can also be modulated by value as coded by the $* system.
indicates the most active fe

activation. e S* system uses a form of classical conditioning while the R* system
uses reinforcement learning. Finally, the CX system learns both to inte-
grate stimuli over time to form a context and to modulete processing in
the $*,Rand R* systems.
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The model has been implemented within the lkaros framework and
exploits the duality between multiple self-organizing maps with weight-
sharing and multiple parallel convolution operations to obtain real-time
processing through the efficient utilization of multiple processor cores
and hardware accelerated convolution operations.
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The Ikaros framework
|

The lkaros Project: System Level Cognitive Modeling

Birger Johansson, Rasmus Badth, Stefan Winberg, Magnus Johnsson, Christian Balkenius
Lund University Cognitive Science
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Summary

Zin data. The system makes
1 Internet based information and
ugh an open web-based inter-
ontrol architecture for robots
velopment of a brain inspired

‘Monitor your simulations using a web
browser

& communicate with other lkaros processes running on the same
P a different processor or computer. In addition, the kernel communi-

cates with an optional graphical user interface client running in a web

browser.

We have consequently strived to comply with the relevant standards as

much as possible. These includes ANSI C++, POSIX and BSD sockets. A

related choice was to depend on as few external libraries as possible.

How can I try it?!
Go ikaros-project.org the latest version of Ikaros.
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Action sequences, distal goals, Mental simulation
subgoals, cognitive control Embodied problem solving

Fogassi et al., 2005 Chersi et al, 2011
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For these and other results, check: A
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Newsflash
Goal-Leaders Meeting @ Cogsys 2012
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Latest News
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o Aims of Goal-Leaders
Project

o Project Partners

R | Advertisement: Open PhD Position

o External links
Contact us

Welcome to Goal-Leaders Who's Online
Aims of Goal-Leaders project L3 We have 1 guest online

Login Form

PhD subject: Visual perception and motor anticipation in
biological and artificial systems. Keywords: eye tracking,
attention, prediction, neural networks. Driving fields:
robotics, psychology, computational neuroscience

behind an agent's anticipatory and

Starting date: position already available,

Goal-Leaders Project e
ders |

Affiliation: LAPSCO, Pascal Institute (Clermont-Ferrand, Fr)
Contact me or j-charles.quinton@univ.bpclermont.fr




