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Goal-Leaders: enhancing robots’  
goal-directedness and proactivity 



Brains, goal-directedness and autonomy 

  Brain “information processing” is dominated by 
endogenously determined motivations, predictions 
and goals, and processes that prepare to action 
  Cascading effects on perception, memory, attention, 

monitoring, behavior, etc. 
  In turn, this sensorimotor loop affects internal processing 

(drive and goal setting, action selection, prediction, etc.) 



Brains, goal-directedness and autonomy 

Affordance competition hypothesis 

Many others: predictive brain, Bayesian brain, ideomotor principle, sensorimotor 
theories, model-based reinforcement learning in neuroeconomics, etc. 

Free energy principle and 
predictive coding 

Friston, 2010 Cisek and Kalaska, 2010 



Goal-directed vs. habitual behavior 

Model-based RL Model-free RL 
Dickinson, Balleine (1998);  Daw et al., (2005) 



Project Objective: 
Adaptive Builder Robots 



Adaptive Builder Robots 

  Realize a set of externally assigned tasks (e.g., fetching objects, clearing an 
area, composing building parts) 

  Maintain homeostatic drives in safe range (e.g., never remain without 
energy, not get hurt) 

  Combinatorial tasks, subgoaling, cognitive control (e.g., finding and 
stacking objects to compose a given construction) 

  Proactivity (e.g., store useful building parts, predict loss of energy and 
recharge before starting a long task) 

The robot is required to 
assemble a construction by 
selecting, reaching and 
assembling materials 
having different size and 
colour.  



We need breakthroughs in robots’ 
goal-directedness and proactivity 



1. Enhancing robots’ goal-directedness 

Verschure, Kröser et al.(1993); Verschure, Voegtlin et al. (2003) 

Our starting point: 
Distributed adaptive control (DAC) 

Drives Stereotyped behaviors 

Goal states, 
objects, events 

More flexible actions 

More complex goals 

… 

Learning increasingly sophisticated 
goals and goal-achieving strategies 

Reactive Adaptive Contextual 

Drive: having stable 
structure, tall structure 

Reactive behavior: 
stacking 

Represents objects in terms of 
how much they support other 
objects (cubes vs. sphere; big 
objects down, small objects on 
top). Objects / place value 

Goal states: “Towers”, “bridges” 

Strategies for efficient assembling 
of constructions, storing of useful 
objects, subgoaling 



2. Enhancing robots’ proactivity 

Evaluate outcomes 
Predict dangers 
Set distal goals  

Prediction,  
mental simulation 

Goal-directedness,  
Cognitive control 

From Marc Jeannerod’s Lab 



A few achievements so far 



Hippocampal-striatal loops for mental simulation 

Johnson and Redish (2007)  

Prospective coding in the rat 
hippocampus (CA3): forward 
sweeps at decision points 

The rats position is indicated by the white circle. The reddish 
areas indicate the firing rate of hippocampal neurons with place 
fields at that particular point of the maze.  

Reward-predictive cues modulate firing 
patterns of hippocampal and striatal 
neurons  

Lansink et al. (in prep)  
MISSING 



Goal-directed decision-making:  
hippocampal replay for accessing reward info in the striatum 

Neural circuit for the affective labeling 
of spatial representations 

Chersi, Pezzulo (in prep.) 



Goal-directed decision-making:  
hippocampal replay for accessing reward info in the striatum 

Neural circuit for the affective labeling 
of spatial representations 

Chersi, Pezzulo (in prep.) 

The neural circuit at work 



Balance between goal-directed vs. habitual choice 

Model-based RL Model-free RL 
Dickinson, Balleine (1998);  Daw et al., (2005) 

Different types of 
predictive learning 
associated with striatal 
sectors in rat brain. 

Pennartz et al., 2011 

Simon and 
Daw., 2011 



Balance between goal-directed vs. habitual choice 

A mixed instrumental controller that 
solves an exploration-exploitation 
dilemma, trading off the costs of 
mental simulations with the value of 
information it produces 

Pezzulo et al. (sub) 

Stable environment: habituation 

Changing reward contingencies 

Uncertainty and variance 
of action value estimates 

Forward sweeps to reduce 
uncertainty when necessary 



Multifunctionality:  
Internal drive regulation of sensorimotor reflexes  

Demo @ FET ’11, Warsaw: 
a catering assistant autonomous robot   

Renno-Costa, Verschure 

Integration of two loops: 
goal-directed navigation and 
face detection 



Hippocampal place fields modeling 

Renno Costa, Lisman, Verschure 



Predicting objects dynamics 

Hesslow (2002) suggested that the brain simulates the future by first 
learning the expected outcome of an action or event and then uses this as 
input for a new prediction. As the process is repeated multiple times, the 
brain is able to simulate future consequences of an action. Here we apply 
this idea to the understanding of dynamical scenes where a system for 
prediction is converted into one for simulation.

To investigate how a system for prediction can be used for simulation we 
implemented the framework illustrated in the figure below. This frame-
work consists of four modules that interact with each other and with the 
world in order to anticipate the temporal unfolding of an observed 
dynamic system.

The model was implemented using the Ikaros system (Balkenius et al. 
2010) where each of the components of the model were implemented as 
a separate module. A module reads data from its input connections in 
discrete time and generates new output at discrete intervals, usually 
referred to as ticks. These ticks can be locked to real-time when the system 
is used to control a robot and thus supports a seamless transition from 
simulation to a real robot.

We tested the accuracy of the predictions in a computer simulation using 
the open source physics engine Box2d (www.box2d.org). The simulated 
world was a two dimensional environment observed form the horizontal 
perspective, meaning that gravity pulled any objects down. A ball was 
launched from one of the edges of the world and as soon as the ball 
moved outside the boundaries of the world it was placed at a new start-
ing position.

C. Balkenius, J. Morén, B. Johansson, and M. Johnsson, Ikaros: Building cognitive models for robots, 
Advanced Engineering Informatics, 24, 1, 40-48, 2010.
G. Hesslow, Conscious thought as simulation of behaviour and perception, Trends in Cognitive 
Sciences, 6, 6, 242-247, 2002.

An example of prediction in a two 
dimensional environment. The large 
black circle is the ball being tracked, the 
gray dots are the predictions and the 
black dots are a graphical representation 
of how future obstacles are detected.

The model predicts how a ball will fall 
down while bouncing on some obsta-
cles.

Lund University
Cognitive Science

Learning to Simulate the Behavior of a Dynamical Object
Stefan Winberg and Christian Balkenius 
Lund University Cognitive Science
Lund, Sweden

Winberg, Balkenius 



Vision hierarchies modulated by value 

Lund University
Cognitive Science

Hierarchical Models of Vision and Attention
Christian Balkenius and Birger Johansson
Lund University Cognitive Science
Lund, Sweden

We present a system-level computational model of visual learning and 
attention. The hexagons represent different cortical regions that are 
controlled by a central system consisting of subsystems for stimulus 
evaluation (S*), response evaluation (R*) as well as contextual modulation 
of learning and procesing (CX). The central system R is responsible for the 
production of 'innate' responses to visual stimuli.

The cortical part of the model learns on line to code for visual stimuli 
using hiearchical principal component analysys (HPCA). By combining 
features of self-organizing maps, convolutional networks and principal 
components analysis, a hierarchical network with an arbitrary number of 
layers can self-organize from input data consisting of  natural images. The 
hierarchical system is capable of both bottom-up analysis and top-down 
reconstruction of the visual input. The processing in the heirarchical 
system can also be modulated by value as coded by the S* system.

The S* system uses a form of classical conditioning while the R* system 
uses reinforcement learning. Finally, the CX system learns both to inte-
grate stimuli over time to form a context and to modulete processing in 
the S*, R and R* systems.

The model has been implemented within the Ikaros framework and 
exploits the duality between multiple self-organizing maps with weight-
sharing and multiple parallel convolution operations to obtain real-time 
processing through the efficient utilization of multiple processor cores 
and hardware accelerated convolution operations.

Top Left. Input image. Top Right. 
Reconstructed input from top-down 
attention signals. Bottom Left. 
Learned receptive fields. Bottom 
Right. Activity pattern in the first 
layer of the hierarchy. The color 
indicates the most active feature and 
the intensity represents the level of 
activation.

Image reconstructed from top-down 
expectations from the third hierar-
chial layer through layer 2 and 1.

Activity pattern in one of the cortical 
modules.

Balkenius, Johansson 



The Robot Builder 

Examples of modules included in the framework

AttentionFocus selects an image region
ChangeDetector detects !icker
CoarseCoder encodes a two-dimensional value in a vector
ColorClassi"er tracks colored objects
ColorMatch match a color
WhiteBalance adds two inputs
Dynamixel interfaces Dynamixel servos
Epuck interfaces the e-puck robot
GaborFilter "lters an image
GridWorld simple agent and world simulator
HarrisDetector "nds curvature points
HysteresisThresholding adaptive edge threshold
InputVideoQT grabs images from QuickTime camera
KNN (K Nearest Neighbors) using a KD-tree
KalmanFilter a standard Kalman "lter
LinearAssociator learns a linear mapping
M02_Amygdala an amygdala model
M02_Cortex a cortex model
M02_Hippocampus a hippocampus model
M02_OFC an model of orbitofrontal cortex
M02_SensoryCortex a (naive) cortex model
M02_Thalamus a thalamus model
MazeGenerator generates a perfect maze
NetworkCamera grabs images from network camera
OuterProduct outer product of two inputs
OutputPNG writes PNG "les
PIDController standard PID controller
Perceptron single layer of perceptrons
PlanarArm simulation of a simple arm and a target object
Polynomial calculates polynomial
QLearning simple Q-learning
SaliencyMap a saliency map
SobelEdgeDetector "nds edges
SpatialClustering "nds clusters of pixels

Summary

The goal of the project is to develop an open infrastructure for system 
level modeling of the brain including databases of experimental data, 
computational models and functional brain data. The system makes 
heavy use of the emerging standards for Internet based information and 
will make all information accessible through an open web-based inter-
face. In addition, Ikaros can be used as a control architecture for robots 
which in the extension will lead to the development of a brain inspired 
robot architecture.

System overview

The Ikaros kernel. The kernel starts a number of threads where a number 
of modules are executed. The modules communicates through a set of 
circular buffers that correspond to outputs from the modules. The kernel 
can also communicate with other Ikaros processes running on the same 
or on a different processor or computer. In addition, the kernel communi-
cates with an optional graphical user interface client running in a web 
browser.
We have consequently strived to comply with the relevant standards as 
much as possible. These includes ANSI C++, POSIX and BSD sockets. A 
related choice was to depend on as few external libraries as possible. 

How can I try it?!
Go to www.ikaros-project.org to download the latest version of Ikaros.
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Check out www.ikaros-project.org

The Ikaros Project: System Level Cognitive Modeling
Birger Johansson, Rasmus Bååth, Stefan Winberg, Magnus Johnsson, Christian Balkenius
Lund University Cognitive Science
Lund, SwedenLund University

Cognitive Science

Examples of various web views

Monitor your simulations  using a web 
browser

The Ikaros framework 



Action sequences, distal goals, 
subgoals, cognitive control 

A few planned achievements: 

Mental simulation 
Embodied problem solving 

Chersi et al, 2011 Fogassi et al., 2005 



Thanks! 

For these and other results, check:  
www.goal-leaders.eu 

Advertisement: Open PhD Position 

PhD subject: Visual perception and motor anticipation in 
biological and artificial systems. Keywords: eye tracking, 
attention, prediction, neural networks. Driving fields: 
robotics, psychology, computational neuroscience 

Starting date: position already available, 

Affiliation: LAPSCO, Pascal Institute (Clermont-Ferrand, Fr) 
Contact me or j-charles.quinton@univ.bpclermont.fr 

Our Advisory Board: Matthew Botvinick, Neil Burgess, Martin Butz, Michael Hasselmo, Bjorn Merker, 
Tony Prescott, Peter Redgrave 


