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Brief summary

Goal: comprehensive solutions to the 
problems of scene and object representation 
and behavioral sequence generation in 
cognitive autonomous robots. 

Seek solutions inspired by embodied human 
cognition and its development.

Hypothesize that principles of neural 
dynamics, in particular, Dynamic Field Theory, 
together with principles of learning provide 
the appropriate language.



What?

Scene representation: humans 
excel at fast analysis and 
memorization of objects and 
their poses in scene contexts 

[Hollingworth]



What?

Sequence generation: 
humans perform complex 
sequences of goal-oriented 
actions with ease (serial 
order)

and quickly learn new 
sequences



Our vision: cognitive robots that orient actions 
at objects, generate goal-oriented sequences 
of actions, interact with human users, and 
learn from experience



Two bottlenecks

(1) scene and object representation 

segment the visual array into meaningful patches

enable visual exploration and keep track of objects in the 
environment

learn objects from a small number of views or even a single 
view

recognize objects when the view has changed and  
estimating object pose



Two bottlenecks

(2) sequence generation

autonomously initiate motor acts 

terminate motor acts when an action’s intention has been 
achieved

organize sequences to both comply with behavioral 
constraints and to achieve goals

autonomously learn to achieve its tasks as environmental 
conditions vary



How? => neural dynamics
dynamic fields: abstract from the 
discrete nature of individual neurons

attractors enable linking to low-level 
sensory information

perceptual and motor decisions, 
working memory, and other elementary 
forms of cognition emerge from 
dynamical instabilities

learning is a natural property of neural 
dynamical systems

framework for system integration in 
dynamic field architectures

enables transfer from human cognition 
to cognitive robotics 



Who?
RUB: Institut für Neuroinformatik 

Gregor Schöner, Tobias Glasmachers, Christian Faubel, 
Oliver Lomp, Mathis Richter, Yulia Sandamirskaya, Stephan 
Zibner

HIS: Cognition & Interaction Lab
Tom Ziemke, Robert Lowe, Boris Duran, Serge Thill

UALG: Vision Lab of the Centro de 
Investigação Tecnológica do Algarve 

Hans du Buf, Kasim Terzic, João Rodrigues

IDSIA: Istituto Dalle Molle di Studi 
sull'Intelligenza Artificiale

Jürgen Schmidhuber, Matthew Luciw and Sohrob 
Kazerounian 



WP1: Dynamic scene representations
Task 1.1 Develop a neural feed-forward system for local gist 
estimation

Martins, J.A., Rodrigues, J.M.F. and du Buf, J.M.H. (2012) Local object gist: meaningful 
shapes and spatial layout at a very early stage of visual processing. Accepted by Gestalt 
Theory.

Figure 12. Partial occlusions. Top: because of colour contrast, only the inner circle and triangle of
the traffic signs have been detected. Bottom: two partially occluded monitors in a laboratory scene.

The most interesting question concerns the way in which local object gist and the non-standard retinal
cells can be integrated in the normal pathway for invariant object recognition. The trivial part of the
answer is that the spatial layout map—the centres of shapes and their type—can be exploited in the
prefrontal cortex for (a) biasing all objects in memory with the same shapes, and (b) updating the FoA
map in order to prepare saccadic eye movements. Much less trivial are the non-standard cells and the new
pathways as discussed by Masland and Martin (2007). It is possible that not only top-down attentional
modulation from the prefrontal cortex influences processing down to the lower levels V4, V2, V1 and
even the LGN, but that the same occurs bottom-up and at the same time. The difference may be that
top-down modulation can be a serial process whereas bottom-up modulation can be a parallel one. Such
questions are very speculative, and it may take some years before we know more about these issues, both
the non-standard cells and good computational models of them, and their pathways to and roles in other
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Figure 6. Overview of the whole process with the different cell layers in the case of corner detec-
tion. Conspicuity layer Ψ is a 9:1 mapping of layer Ici. Non-maximum suppression layer Ω is a 9:1
mapping of layer Ψ. A corner in layer Ω is checked for curvature in Υ, for orientation in Θ, and for
connectivity in Λ. It is represented as a bar in layer ΞBCu and as a corner in layer ΞBCo.

Mathematically, they are assigned as follows:

BCorner
i,j =





ON if

[
φ̂(λi) ± 1

2 φ̌(λi)
]
∧
[
φ̂(λj) ± 1
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]
"= ∅

OFF otherwise.
(15a)

BCurve
i,j =





ON if connected by active Ω cells

OFF otherwise.
(15b)
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)
·
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π

)
(15c)

Dt
i,j = max (|xj − xi| , |yj − yi|) . (15d)
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WP1: Dynamic scene representations

Task 1.2 Develop an 
autonomous, active system 
of visual exploration, scene 
representation, and scene 
updating

Zibner, S. K. U.,  Faubel, C., Schöner, 
G.: Making a robotic scene 
representation accessible to feature 
and label queries. Proceedings of the 
First Joint IEEE International 
Conference on Development and 
Learning and on Epigentic Robotics, 
ICDL-EPIROB 2011, Frankfurt, 
Germany

=> Poster 
Zibner, Faubel, Schöner



WP2: Dynamic object representations

Task 2.1 Develop a neural dynamic 
approach to object recognition that 
combines feature-based 
representations with pose estimation
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Fig. 3. Recognition with localized receptive fields of hue. The schema
shows the recurrent process of shift estimation and pattern recognition. On
the left side the forward pathway is sketched, the localized receptive fields
are shifted over the image to build the forward vector f hue to be matched
with each memory pattern. On the right side the backward path is depicted
where the vector bhue is constituted through the weighted sum of memory
patterns.

C. Other feature channels

In addition to the hue feature map, we compute three
other feature maps from the responses of steering filters
[16] applied to the three color channels of a YCrCb color
space. These feature maps contain orientation information
and, just like for the hue feature map, we extract localized
receptive field histograms from these maps. In addition to
these four types of localized receptive field histograms,
we also compute a shape description through a maximum
pooling of the energy from the steering filter responses.

D. Cascading of transformations

Both the localized receptive fields of oriented edges and
the shape description vary with object rotation and support
the estimate of rotation. For the localized receptive field
histograms of oriented edges, object rotation induces a phase
shift. Computing rotated responses thus corresponds to shif-
ting the histograms. For the shape description we compute

rotated versions by applying a rotation matrix to the shape
image.
The estimation of shift and of rotation of an object can be

cascaded [10]. First the shift transformation is estimated. The
weighted sum of the forward pathway f y,u,v and Fshape is used
as input to the rotation transformation. Here, analogously to
the shift transformation, weighted sums of rotated patterns
f ′,y,u,v and F′,shape are formed that are then used for the pat-
tern match. In the backward pathway, the estimated rotation
is conversely applied to back-transform the weighted sum of
memory patterns b′,y,u,v and B′,y,u,v. These back-transformed
versions are then used as weighted sums of memory patterns
for the shift estimation.

E. System fusion, transformation estimation modules and
pattern matching

The role of the transformation estimation modules and the
pattern matching module is to accelerate this process through
selection, to force them to converge to single solutions and
to stabilize the selected estimates and winning patterns. We
use Dynamic Neural Fields for the estimation of the spatial
shift and of the rotation. For the pattern matching module,
we use assemblies of Amari type dynamic neurons. These
all have a two layer architecture in common. The first layer
receives the input and has relatively weak lateral interactions
so that its output resembles the input with weak suppression
of outliers. The output of the first layer feeds into the second
layer which is more strongly interaction driven and has
stronger competition. This makes that only a a single peak of
activation survives (for the estimation field) and only a single
neuron remains active (for the pattern matching system, see
also Figure 4).
A simple peak detection mechanism at the level of the

second layer gates the read-out of either the first or second
layer to the output of the estimation or pattern match layer.
As long as no peak has yet emerged in the second layer,
the first layer is read out. Once a peak has formed, the
second layer is used for read-out. The rationale behind this
architecture is that at the beginning of the pattern match and
transformation estimation, it is useful that the weighted sums
are still relatively unselective, so that many transformations
and many memories have a vote. This avoids that the system
is driven by an accidental dominance of individual features
early in the process. Once the recurrent converges, it is
nevertheless desirable to switch into a decision making mode,
in which a single solution is selected.
The system is based on five different feature dimensions

which need to be fused. Fusion is done in the two kinds
of modules at several levels. Fusion takes place at the input
level of the different transformation estimation modules. The
contributions of different feature dimensions are weighted
and summed up to form the combined input to the transfor-
mation estimation. Fusion also takes place at the output level
of these estimation modules, because each output is applied
as a weight factors to all feature dimensions. Similarly the
different feature dimensions are fused in the pattern matching

[Faubel, Schöner]



WP2: Dynamic object representations

Task 2.2 Develop a feature-based object recognition 
approach that is invariant under scale change

Rodrigues, J.M.F., Lam, R., du Buf, J.M.H. (2012) Cortical 3D face and object recognition 
using 2D projections. Accepted by Int. J. of Creative Interfaces & Computer Graphics. 
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272 The basic scheme for line and edge detection is based on

273 responses of simple cells: a positive (negative) line is

274 detected where RE shows a local maximum (minimum) and

275 RO shows a zero crossing. In the case of edges the even and

276 odd responses are swapped. This gives four possibilities for

277 positive and negative events. For an improved, detailed

278 scheme see Rodrigues and du Buf (2008) and Section ‘‘Cell

279 models and multi-scale feature extraction’’ in Appendix.

280 Figure 1 (top row) shows lines and edges detected at

281 eight scales k = {4; 8; 12; 16; 20; 24; 28; 32}. Different

282 levels of gray, from white to black, are used to show the

283 events: positive/negative lines and positive/negative edges,

284 respectively. As can be seen in Fig. 1, at fine scales many

285 small events have been detected, whereas at coarser scales

286 more global structures remain that convey a ‘‘sketchy’’

287 impression. Similar representations can be obtained by

288 other multi-scale approaches; Lindeberg (1994). The mid-

289 dle row shows, from left to right, the input image, lowpass

290 information, symbolic line and edge interpretations at a

291 fine and a coarse scale, and the reconstructed image

292 (see Section ‘‘Reconstruction model’’ in Appendix). Sum-

293 marizing, the multi-scale line/edge interpretation with

294 unipolar line and bipolar edge cross-profiles allows

295 reconstructing the input image, and exactly the same rep-

296 resentation will be used in the object categorization/

297 recognition process.

298 Another important part of the model is based on

299 responses of end-stopped cells in V1, which are very fuzzy

300 and require optimized inhibition processes in order to

301 detect keypoints at singularities. Recently, the original,

302 single-scale model by Heitger et al. (1992) has been further

303stabilized and extended to arbitrary scale, and the multi-

304scale keypoint representation has been used to detect facial

305landmarks and faces; Rodrigues and du Buf (2005). There

306are two types of end-stopped cells: single and double.

307Responses of these are denoted by Ss and Ds, which cor-

308respond to the first and second derivatives of the responses

309of complex cells Cs. A final keypoint map Ks at scale s is

310obtained by combining local maxima of responses of single

311and double end-stopped cells after applying tangential and

312radial inhibition; see Rodrigues and du Buf (2006) for

313details, also Section ‘‘Cell models and multi-scale feature

314extraction’’ in Appendix. The bottom row in Fig. 1 shows

315detected keypoints (white diamonds) at fine (left) and

316coarse (right) scales superimposed on the darkened input

317image (at the same scales as used in the top row).

318A saliency map for ‘‘driving’’ FoA—for details see

319Rodrigues and du Buf (2006)—can be obtained by sum-

320ming keypoints over all scales. This provides a retinotopic

321(neighborhood-preserving) projection by grouping cells,

322and regions surrounding the peaks can be created by

323assuming that each keypoint has a certain Region-of-

324Influence, the size of which is coupled to the scale (size) of

325the underlying simple and complex cells. Keypoints which

326are stable over many scales will result in large and distinct

327peaks: at centers of objects (coarse scales), at important

328sub-structures (medium scales) and at contour landmarks

329(fine scales). The height of the peaks provides information

330about their relative importance. In other words, since

331keypoints are related to local image complexity, such a

332saliency map (SM) provides information for directing

333attention to image regions which are worth to be

Fig. 1 Top: multi-scale line/edge detection in the case of a mug with,
from left to right, fine to coarse scales. Middle: mug input image
(at left) and reconstruction (at right) by combining lowpass

information (second) and symbolic line/edge interpretations at a
few scales (third and fourth images). Bottom: multi-scale keypoint
representation of the mug with, from left to right, fine to coarse scales
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WP3: Organizing sequential behavior

Task 3.1 Develop a neural dynamic 
architecture for serially ordered 
behavioral sequences

Task 3.2 Expand this architecture to 
include the organization of behavior to 
accomodate intrinsic constraints

Learning Production
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Figure 11: One run of the robotic demonstrations. A: Time-courses of activation of five ordinal nodes during
sequence learning and production. B: Time-course of activation in the action field. Positive activation in the
field encodes the color currently searched for. C: Time-course of activation in the condition of satisfaction
field. Arrows mark the times when condition of satisfaction signals were emitted (detection instabilities in
the field). D: The projection of the perceptual color-space field onto the spatial dimension (horizontal axis of
the image plane). The arrows mark times when the object of interest in each ordinal position first appeared
in the visual array of the robot. The “random search” behavior changed to “approach target” behavior at
these points.
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=> Poster: Richter, 
Sandamirskaya, 

Schöner



WP4: Learning principles for 
organization of sequential behavior

Task 4.1 Develop an approach toward learning the condition 
of satisfaction of elementary actions

=> movie

Incremental learning a low-dimensional encoding of high-dimensional 
inputs (images) in a discrete time dynamics: Matthew Luciw and 
Sohrob Kazerounian: Incremental Slow Feature Analysis: Adaptive and 
Episodic Learning from High-Dimensional Input Streams (under 
review)



WP4: Learning principles for 
organization of sequential behavior

Task 4.5 Develop a method to optimize parametric 
control of Dynamic Fields

diagram
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[Glasmachers, Lomp]



WP5: Implementation and integration

Task 5.1 Developing standards/
software framework

released CEDAR (Cognitive Embodied 
Dynamic ARchitectures), a software 
framework to graphically assemble and 
simulate Dynamic Field models: 
www.cedar.ini.rub.de

[Lomp, Zibner, Richter]

http://www.cedar.ini.rub.de
http://www.cedar.ini.rub.de


Outreach

Fall school in Guimarães, Portugal in 
September 2011

Neural Dynamics Approaches to Cognitive Robotics

co-funded by the EU Cognition II Network

http://www.robotics-school.org/

http://www.robotics-school.org
http://www.robotics-school.org


we are at month 11... ... expect 
more in the near future... 


