

COMPOSING LEARNING FOR ARTIFICIAL COGNITIVE SYSTEMS (CompLACS)

Main theme of the project

- Development of components for various learning problems, that can be composed together.
- The goal is a well-founded suite of technologies that enable the construction of complex cognitive systems.

Components and learning problems

- Representation of perception and experience
- Trading off exploration and exploitation
- Autonomous exploration and skill acquisition
- Reinforcement learning
- Control and multi-component systems

"Design Scenarios"

- How can components be combined and put to use?
 - Assumption: Well chosen decomposition facilitates complex design.
- Taxonomy of components leads to a decomposition methodology for complex systems.
 - Requirements for the components

Application scenarios as testbeds

- Design scenarios and components are tested on three application scenarios:
 - Robot arm with cameras
 - Quadrocopers
 - Web content analyser
- Simulators will be distributed to groups working on components, and used as platforms to implement learning algorithms.

Application: Robot arm

- Test-bed for scenarios of motor control
 - Complex motor skills require a variety of movements chosen reactively, and motor planning and coordination on several timescales.
 - An important area of innovation is in learning to produce such behaviour by composing biologically plausible motor primitives to provide a wide range of reactive movement.

Application: Quadrocoper

- Adapted from an existing commercial radio-controlled quadrocopter
- Test-bed for scenarios with multi-agent control (swarms of quadrocopters)

Application: Web Content Analyser

- Existing live system reads ~30K news articles per day (23 languages), classifies them with dozens of SVMs, and maintains info on ~10K named entities
- Multiple independent learning modules communicate by tagging and summarising news articles, and provide mutual training feedbacks.
- Tractable test-bed for examining stability and effectiveness of multiple interacting learning modules.

WP1: Perceptual and Experiential Representations

 Key observation: Learning grounded in experience traces can avoid hand-crafted representation spaces.

- Passive learning of experiential representations
- Active and attentional control of experiential systems

WP2: Multi-armed bandits and extensions

- Multi-armed bandits are the simplest model involving a trade-off between exploration and exploitation.
- Algorithmic and theoretical analysis have shown how to achieve near optimal performance.
- Remarkably effective in tackling complex Al problems: e.g. MOGO resulted in a quantum jump in artificial GO playing performance.

WP2: Multi-armed bandits and extensions

- Use bandit algorithms to perform planning in MDPs or POMDPs.
- Extend bandit algorithms to hierarchical structures, such as trees.
- Bandit problems with many dependent arms (e.g. GP bandits).

WP3: Towards real-world reinforcement learning

How can future robots *learn* really complex tasks?

- Complex tasks generically consist of a small set continuous basic behaviors.
- These behaviors need to be learned efficiently both using demonstrations and trial & error.
- Task context needs to employ these behaviors in various situations.

WP5: Control and learning of multicomponent intelligent systems

- Decompose the control problem for multicomponent systems.
 - Efficient approximate control methods capitalizing on the link between stochastic optimal control and probabilistic inference.
 - Superposition principle in path integral control theory: simple skills can be combined to generate complex movements.
 - Control architectures that include reasoning among agents.

WP4: Self motivated and autonomous exploration and skill acquisition

- Autonomous exploration is necessary when supervision and explicit feedback is insufficient.
- Objective: Investigate together
 - autonomous exploration,
 - the learning of multiple skills,
 - the construction of higher-level representations.

Autonomous exploration

Project details

- 4 years project, started in March 2011.
- 8 academic partners:
 - UCL: coordination, design scenarios, representations (John Shawe-Taylor, Yee Whye Teh, Steve Hailes)
 - Bristol: application scenarios (Nello Cristianini)
 - Lille: bandits (Remi Munos)
 - Darmstadt: reinforcement learning (Jan Peters)
 - Nijmegen: control theory (Bert Kappen)
 - Berlin: control theory (Manfred Opper)
 - Royal Holloway: skill acquisition (Chris Watkins)
 - Leoben: autonomous exploration (Peter Auer)