

<u>Generalising Robot Manipulation Tasks</u>

www.gert-project.eu

Christoph Borst (DLR – Robotics and Mechatronics Center) 23.2.2012

Consortium

Beneficiary Number *	Beneficiary name	Short name	Country	Main research objectives	
1 (coordinator)	Deutsches Zentrum für Luft- und Raumfahrt	DLR	Germany	 Visual machine perception Robot control Integration and demonstration platform 	
2	University of Birmingham	UB	United Kingdom	 Learning of planning operators / hybrid planning Optimising Grasping Strategies using POMDP solvers 	
3	Oerebro Universitet	ORU	Sweden	 Symbolic robot plans / hybrid planning Task level planning Geometric reasoning 	
4	TU Darmstadt	TUD	Germany	Adapting grasps and grasping primitives to new objects using statistical reinforcement learning	

Motivation

- Robots already perform nice manipulation tasks / demos
- Special programs for each **robot**, **task** and **object**
- Robust programs need expertise and time!

Motivation

- Robots already perform nice manipulation tasks / demos
- Special programs for each robot, task and object
- Robust programs need expertise and time! lacksquare

State of the art

- Manipulation options are currently restricted to:
 - Small set of previously known objects
 - Object recognition and localisation
 - Geometry of objects is known in advance
 - Minor changes in the scene arrangement
 - Motion planning (goal configuration reachable)
 - Offline grasp planning (take a configuration from database)
 - Simple Objects and simple tasks
 - Robustness of operation is far from suitable for daily use

Motivation

In GeRT we aim to generalise manipulation task with:

• the same task constraints

• different object geometries

• different object postions

Motivation

Goal:

Enable a robot to autonomously generalise its manipulation skills from a set of known objects to previously unmanipulated objects in order to achieve an everyday manipulation task.

Approach:

- A set of demonstration programs achieving the same abstract task with different objects and varying scene arrangements is coded by hand and executed on the robotic system.
- These examples form the base for generalising the planning operators and for learning pre- and post Christoph Conditions of operations, Austria, 22.- 23.2.2012

Key aspects

Planning

- Create programs for new task variations

Perception

- Determine Similarities between objects

Learning

- Adapt manipulation to new objects

Integration

- Combine all and run it on a real robot

Christoph Borst

Research Areas

• Hybrid planning of robotic tasks

- Logical planning is required to generate plans from abstract tasks
- Planning operators are to be learned from example programs
- Geometric states have to be accounted to generate executable plans

• Visual perception: recognising objects, parts, affordances

- Functional object classes have to be recognized and labled
- Correspondences between functional parts of known objects and new objects have to be found.

Learning and Optimizing Grasp Strategies

- Grasps from the example tasks have to be mapped and adapted to the changed geometry of new object (based on the perceptual information)
- Reach to grasp strategies (control schemes) have to be developed that allow adaptation and preserve robustness

Integration / Example Programs

• What are good example programs?

• How is the structure of example programs?

 How can we support parallel development/ integration?

What are good example programs?

- The GeRT inspiring "Instant tea preparation"
- control program is a sequence of actions given in an XML file
- end of interpolation gives stop condition
- through moderate stiffness trajectories are **implicitly** adapted.

The tea preparation

Good example programs?

Control programs need:

- stop conditions based on sensor input
- control structures like if-clauses, loops, switch-statements
- state-machines to control movements
- to be online interpreted to be fed by hybrid planners

The structure of example programs

- GUI code displays python source (pyrs-source)
- Script Server code provides a general set of robot commands (macros)
- pyrs-code runs in GUI process, can be single stepped

	lift object	
\triangleright	00 📖 🛤	
55	goto_irame(atomgati i pos_trame)	
36		
37	enable_log(25000)	
38	reset_log()	
39	# grasp	
4 D	annotate_log("grasp")	
41	goto_pos("grasp_sugar" + pos_name, vias=["pre_grasp_sugar ' + pos_name])	
42		
43	≠ lift	
44	annotate_log("int")	
45	goto_frame("approach sugar ' + pos_name)	
46		
47	# wait	
4 B	annotate_log("wait")	
49	sleep(0.5)	18
50	torques = app.justin_log["hand_tau_act"][0]	1
51	nght_hand = norm(torques[:12])	
52	print "right hand torque norm: %.2fivm" % right_hand	
53	n ngnt_nand < 0.20:	
24	log_base += "_falled"	
22	A share	
50	# place	
5/	annotate_log(prace)	
50	auard enable/(
09	guard.enable({	
61	$n_{\rm gar}$	
62	j) noto frame/"at sucar" + pos name)	
62	if with ouard:	1
64	guard disable()	
65	geora aroanno (
66	≠ leave	
67	annotate log"release")	
6B	goto posl"open right hand", vias=l"pre grasp sugar" + pos_namel)	
69		

The structure of example programs

Example: Stacking cups

Example: Stacking cups / sensor log

commanded joint positions

measured joint torques

Sensor logs are annotated in relation to the example programs

Justin's execution environment

- Clear separation of real-time feedback control loop, event based execution control and higher planning levels
- Immediate response on external disturbances through real-time guards.
- Compliant control modes of hands, arms and torso with variable stiffness and damping

Action generalisation / hybrid planning

 How can we analyse / generalise the examples?

 How are the general actions used to replan the same semantic task?

Action learning overview

Need to learn action models, but also mapping between geometric predicates ("on-top-of", "touching", ...) and geometric states.

Action learning

goto_frame("right at cup stack %d" % target_tack)
did_stop = guard.did_stop()
%annotate_log("guard_stop()
%annotate_log("guard_stople() %d" % did_stop) % whether or not
guard.dissble() % disable guard for further motions
set_var("Cart_speed", 1) % teset cart speed to 100%
actionLearner.evaluateCycle()
#annotate_log("release cup")
actionLearner.evaluateCycle()
goto_poe("right upside pre grasp", vias=["right upside preshape
actionLearner.evaluateCycle()
#Annotate_reveluateCycle()
#FARAMSTRINO mug
app.rave interface.release("rightArm", "mug")

app.rave_interface.release("rightArw", "mug")
actionLearner.evaluateCycle()
goto_frame("right above cup stack %d" % target_stack)
actionLearner.evaluateCycle()

 Planning domain definition language action representation learned from annotated code

- Annotations split up actions, tell us what the parameters of the actions are
- Preconditions and effects learned by generalising over state before and after code is executed

Geometric Predicate Learning

- As well as actions, we need to learn predicates for the planning domain and their corresponding geometric states
 - Do this using training data that could be generated from the example programs
 - At present we augment this with hand-generated data

Learned geometric relation

- Mixture of Gaussians model
- 17 dimensional model of relationship between two objects

P(Above(cup,tray) = true). Usable tray shown in black (two dimensions shown).

View Options Interfaces Help

Rotx Roty

translation = (0.0000 , 0.00000 , 0.00000

quaternion = (1.00000, 0.00000, 0.00000)

Using the learned model

Forward direction: just query distribution

Christoph Borst

burbrcjc@satpro: ~/Documents/No

24

Putting it all together

- 1. Goal specified to planner
- 2. Planner generates symbolic plan
- Learned predicates used to get geometry
- 4. Code generated and executed

Verfying the plan through hybrid planner

- The symbolic part of the plan can be generated
- Geometric predicates and actions are learned
- Geometric state is evaluated trough RRT planner

CogSys – TU Vienna, Austria, 22.- 23.2.2012

Perception

- What are the objects of the same functional object class?
 (Shape Similarity)
- How correspond functional geometric parts of known and unknown objects?
 (Shape Warping)

Understanding Unknown Objects for Manipulation

Shape Similarity: Geometric Feature

For query and model shapes independently: •drawing of random *surflet pairs* •computation of intrinsic geometric parameters of each surflet pair: $(\alpha, \beta, \gamma, d) \in \mathbb{R}^4$

Shape Similarity: 4D Feature Density

For each query/model view: random sampling of 100,000 surflet pair relations

Shape Retrieval: Example

		Þ		
Query: Mug			M	
	P			

20 most similar models from the database

Shape Retrieval: Example

20 most similar models from the database

CogSys - TU Vienna, Austria, 22.- 23.2.2012

Shape Warping

Given a *source shape (model)* and a *target shape (scene)* from the same functional category...

Four stages of warping:

Initial alignment brings corresponding parts close to each other – but *without knowing or computing*

- 1. Deformation-tolerant alignment correspondences
- 2. Correspondence assignment (forward and backward)
- 3. Map interpolation (forward and backward)
- 4. Enforcing forward/backward consistency

The rest is simply based on proximity of surface points and surface orientation

Hillenbrand; ICPR 2010

Shape Warping: Alignment

GENERALIZING ROBOT MANIPULATION TASKS

Shape Warping: Correspondence

Shape Warping: Point-Wise

Shape Warping: Grasp Contacts

Top Grasp

Handle Grasp

Learning grasping strategies

- Adapting example grasps to new objects
- Make use of human example grasps
- Learn a robust scheme to execute finger strategies

Grasping with Motor Primitives

- Flexible representation for entire grasping action
 - Obtained from human demonstration
 - Automatically adapt to new grasps

GENERALIZING ROBOT MA

Grasp Adaptation

- Generalization of grasps to:
 - New objects
 - New positions and orientations
 - Different grasp types
- 12 Grasp types from our taxonomy
- Grasp types are learned by imitation

Christoph Borst Lateral

CogSysSpherica, Austria, 22.- 23.2.2012

Tripod

Lateral

Spherical

www.gert-project.ed

Imitation by Dynamic Motor Primitives

- **Based on Dynamical Systems**
- Used to generate Trajectories of arm and hand
- Parametrized by warps of contact points
- Easily generalized to new goal states

Results of last weeks integration week

Learning forward models for grasping

- In GeRT we want to generalise from example programs
- Use these to gather data to learn forward models
- Use these to plan actions for novel tasks or objects
- Start with single finger, then multifinger grasps, in hand manipulation

Prediction learning for single contacts

- Robot effector as some frame A
- Object it is pushing as frame B
- Prediction is saying what Bt+1:t+N is going to be given At-1:t+N-1, Bt and Bt-1 (i.e. prediction for N steps into the future)

Prediction learning & planning with prediction models

Claudio Zito

- -

Next steps:

- Multi-finger manipulation prediction
- Repairing plans that have not been successful
- Adding contact and force information from sensor logs (DMPs)
- Integrating to a working example on Justin

The consortium individuals

