Towards a General Architecture for the Integration of Reactive and Deliberative Behaviour: Insights from Cognitive Neuroscience

Rick Cooper Birkbeck, University of London

Overview

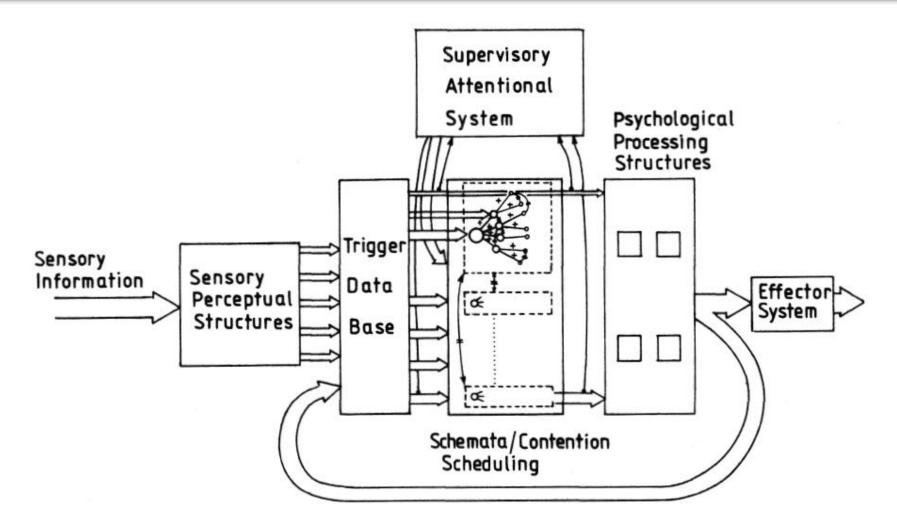
- Reactive behaviour versus deliberative behaviour
- A model of routine behaviour grounded in cognitive neuroscience
- Deliberative behaviour and cognitive neuroscience
 Fractionating the "central executive"
- Towards an account of strategy generation

 The "domino" architecture

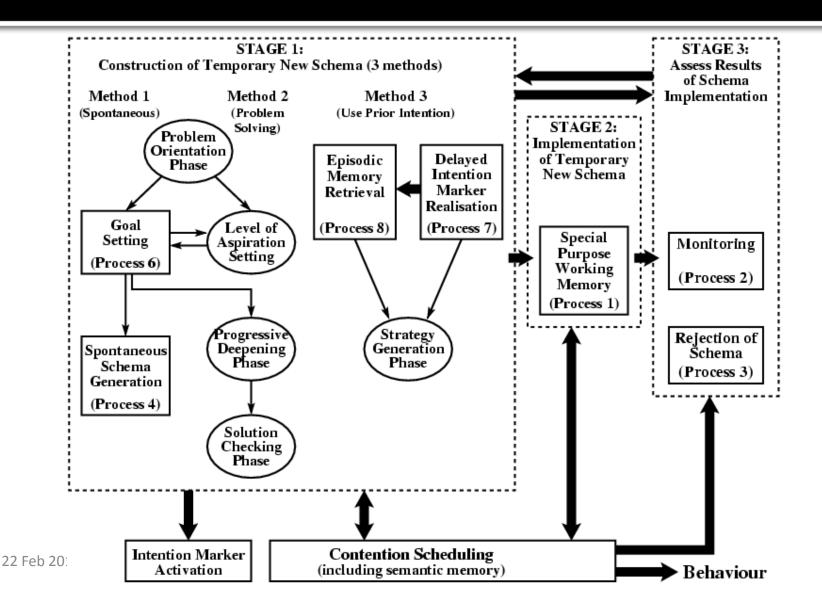
Reactive Behaviour versus Deliberative Behaviour

Two Distinct Domains of Behaviour

- Reactive (routine) behaviour:
 - Fast
 - Habitual
 - Minimal cognitive effort, but ...
 - Subject to slips and lapses
 - Requires deliberate / willed suppression
- Deliberative (nonroutine) behaviour:
 - Slow
 - Willed / Volitional
 - Requires attentional resources / cognitive effort
 - Comprised of sequences of reactive behaviours


Impairments of Reactive Behaviour

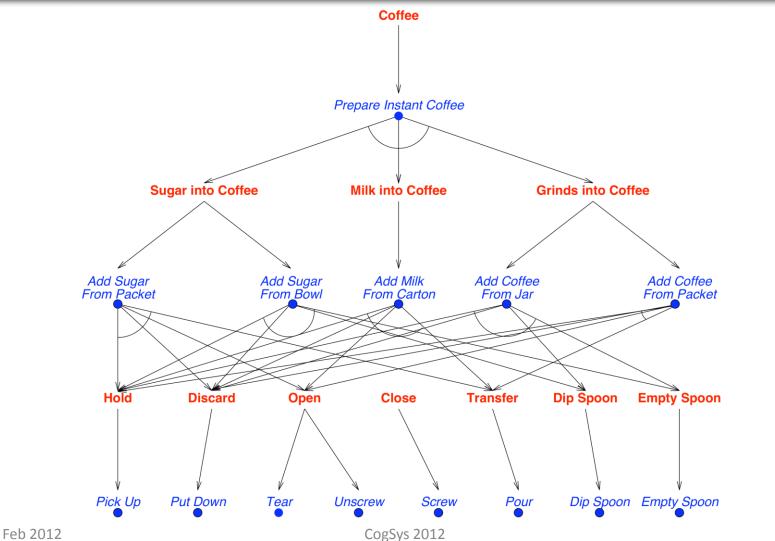
- Ideational apraxia (Liepmann, 1908):
 - Associated with left temporoparietal damage (De Renzi & Lucchelli, 1988)
 - The patient makes conceptual errors in simple tasks involving object use
 - Misuse of tools
 - Mislocation of actions
 - The patient can show no impairment of task knowledge, as assessed through picture sequencing tasks (Rumiati et al., 2001)


Impairments of Deliberative Behaviour

- Utilisation behaviour
 - The patient spontaneously uses objects in the environment in object-appropriate ways
- Anarchic hand syndrome
 - Similar to utilisation behaviour, but with one hand only
- Action disorganisation syndrome (?)
 - Disorganised goal-directed action
- Dysexecutive syndrome
 - Impairments on novel tasks requiring "flexible" thinking

The Contention Scheduling / Supervisory System Framework (Mark 1)

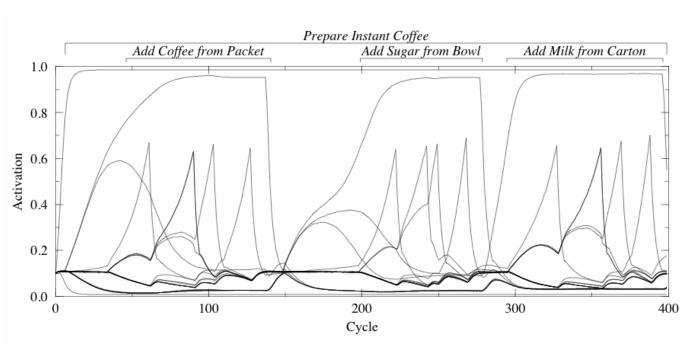
The Contention Scheduling / Supervisory System Framework (Mark 2)



A Model of Routine Behaviour Grounded in Cognitive Neuroscience

Basic Assumptions

- Behaviour comprises performance of action schemas
- Action schemas are abstractions over commonly performed goal-directed sequences of action
- Action schemas are associated with nodes within a hierarchically structured interactive activation network
- Nodes have activation values that are:
 - Excited (top down) intentionally by SS or when their parent node is selected
 - Excited (bottom-up) when their triggering conditions match the representation of the environment
 - Inhibited by nodes corresponding to competing schemas


A Model of CS: A Sample Schema Hierarchy

22 Feb 2012

11

A Model of CS: Processing and Selection of Actions

6	+Prepare Instant Coffee				
34	+Add Coffee from Packet				
61	+Pick Up				
61	Picking up coffee packet with left hand				
66	-Pick Up				
90	+Tear				
90	Tearing coffee packet (with right hand)				
94	-Tear				
103	+Pour				
103	Pouring coffee packet into coffee mug				
110	-Pour				
127	+Put Down				
127	Putting down coffee packet				
137	-Put Down				
148	–Add Coffee from Packet				
198	+Add Sugar from Bowl				
222	+Pick Up				
222	Picking up spoon with left hand				
226	-Pick Up				
242	+Dip Spoon				
242	Dipping spoon into sugar bowl				
245	-Dip Spoon				
249	+Empty Spoon				
249	Emptying spoon into coffee mug				
255	-Empty Spoon				
268	+Put Down				
268	Putting down spoon				
277	-Put Down				
285	-Add Sugar from Bowl				
295	+Add Milk from Carton				
327	+Pick Up				
327	Picking up milk carton with right hand				
332	-Pick Up				
356	+Tear				
356	Tearing milk carton (with left hand)				
360	-Tear				
369	+Pour				
369	Pouring milk carton into coffee mug				
376	-Pour				
388	+Put Down				

Putting down milk carton

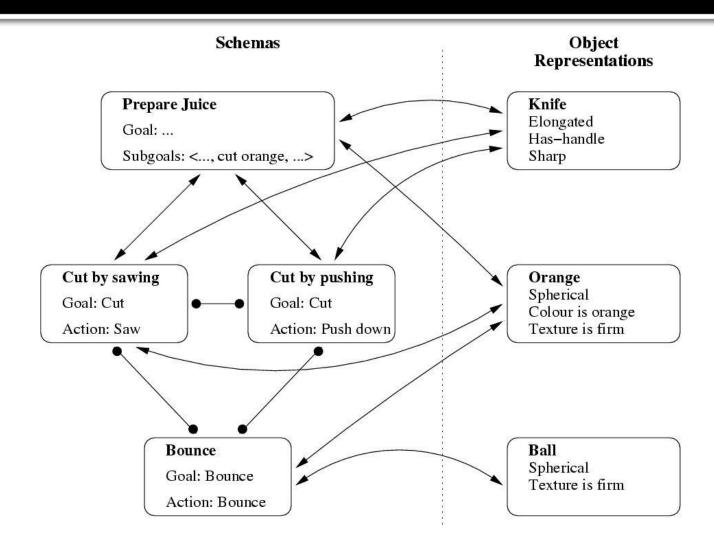
-Put Down

Trial complete

388

396

397


22 Feb 2012

A Model of CS: The Structure of Schemas

- The flexibility of routine behaviour suggests schemas are complex entities:
 - They are goal directed
 - They have an associated triggering condition, which governs activation from the internal model of the environment
 - They specify a set of sub-goals
 - Each sub-goal has pre-conditions and post-conditions, which determine if a sub-goal is optional and when a subgoal is complete

CogSys 2012

A Model of CS: Schema / Object-Representation Interactions

Support for the Model

- Cooper & Shallice (2000):
 - Qualitative simulations of normal slips and lapses, and of action disorganisation syndrome following closed head injury
- Cooper, Schwartz, Yule & Shallice (2005):
 - Quantitative simulations of ADS (error distribution; the distractor effect)
- Cooper & Shallice (2006):
 - An alternative Simple Recurrent Network (SRN) model based on chaining actions within context cannot account adequately for observed error types, or the flexibility of real-world action
- Cooper (2007):
 - Quantitative simulations of ideational apraxia (following left hemisphere lesions), and in particular two subtypes of IA reflecting disconnection of (i) object-representations from schemas and (ii)

schemas from object-representations.

Implications for N/S Theory

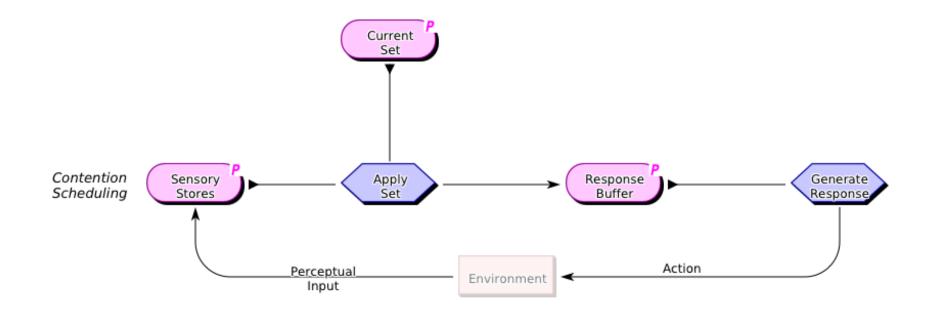
- The model demonstrates that CS is, in principle, capable of the functions ascribed to it
- The model has clarified the structure of schemas (vis-à-vis goal direction, optionality of sub-goals, etc.)
- The model has clarified the interaction between CS and the representation of the environment
- The model demonstrates the proposed explanations of action disorganisation syndrome and ideational apraxia are viable
- Schemas provide an interface between SS and CS: SS may indeed modulate CS by exciting/inhibiting schema nodes

Applications in Cognitive Robotics

- Chernova and Arkin (2007):
 - Sony QRIO robot with six pre-specified behaviours
 - Transfer of behaviour from a deliberative to a routine system
 - The robot acquires complex behavioural routines by chaining subroutines
- Burattini, Finzi and Staffa (2010):
 - Controlling attention under conditions of distraction
 - Lateral inhibition between competing behaviours is used within a mobile robot to implement adaptive attention mechanisms

Deliberative Behaviour and Cognitive Neuroscience:

Fractionating the "Central Executive"

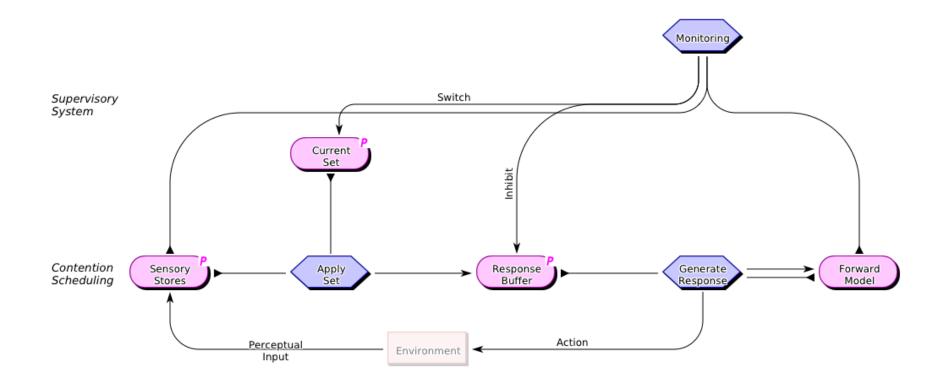

Some Context

- What is the nature of "the central executive"?
- Miyake et al. (2000):
 - Multiple components, including response inhibition, task shifting, memory updating, dual tasking, ...
- Higher level functions:
 - Planning, dealing with novelty, prospective memory for events, adaptive thinking, ...
- Many models of specific EFs in specific tasks
- Few (no?) accounts of how multiple EFs interact to control behaviour in complex tasks (Cooper, 2010)

The Approach

- Basic Issue:
 - What can be deduced (from Cognitive Neuroscience) about the organisation of the Supervisory System?
- Strategy:
 - What functions are required in addition to those of Contention Scheduling to support intelligent behaviour?
 - Does cognitive neuroscience support the existence of subsystems that carry out those functions?
 - We use COGENT, a kind of *Lingua Franca*, to support the theory development

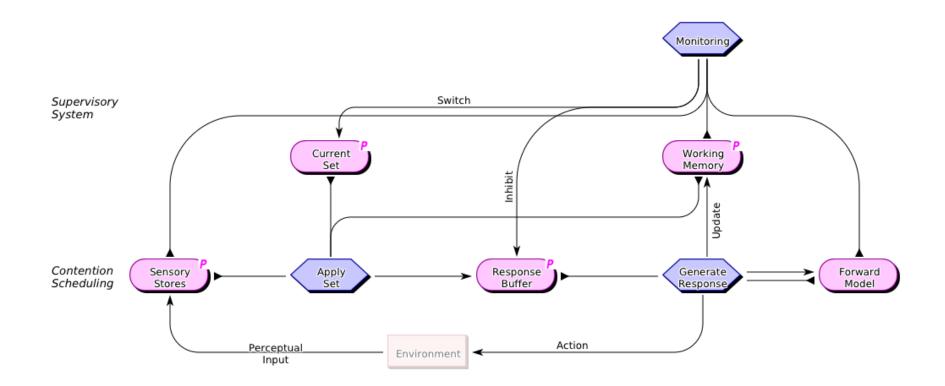
The COGENT Notation (Cooper & Fox, 1998): Basic Contention Scheduling


Augmenting Contention Scheduling 1: Prediction ...

- Rapid motor control in which motor commands are generated before their effects are felt requires the generation and maintenance of internal models of the environment and the state of the motor system (Wolpert & Ghahramani, 2000)
- Two primary types of internal model:
 - Inverse model: Planning
 - Forward model: Predicted consequences
- Similar concepts apply at higher levels of the cognitive system (e.g., Alexander & Brown, 2010)
- Cognitive neuroscience:
 - Cerebellum is implicated in the learning of forward motor models
 - (Superior) parietal lobes are implicated in functions such as prediction

Augmenting Contention Scheduling 1: ... and Monitoring

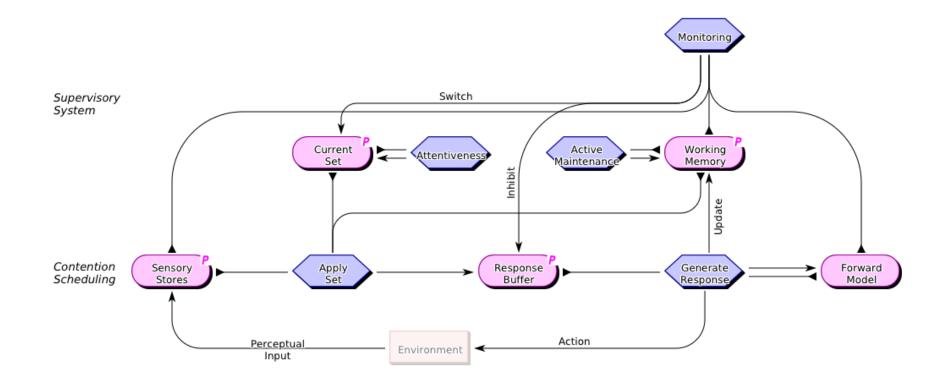
- If prediction is available, then:
 - Comparison of prediction and effect allows error detection
 - Comparison of prediction and intention allows one to preempt and prevent error (i.e., pro-active control)
- Cognitive neuroscience:
 - fMRI studies show ACC activation on erroneous trials of experimental tasks (e.g., Carter et al., 1998)
 - Behaviour of patients on a range of tasks with focal right LPFC damage can be understood in terms of a monitoring deficit (Shallice et al., 2008)


Augmenting Contention Scheduling 1: Prediction and Monitoring

Augmenting Contention Scheduling 2: Working Memory

- Clearly there are neural mechanisms to support the short-term retention of information
- Such mechanisms are required if behaviour is to be sensitive to recent experience
- Cognitive neuroscience evidence:
 - Short term retention of verbal information via the phonological loop (e.g., Baddeley, 1986)
 - Frontal systems are implicated in the manipulation of information retained in short-term memory (e.g., frontal patients and backwards digit span)

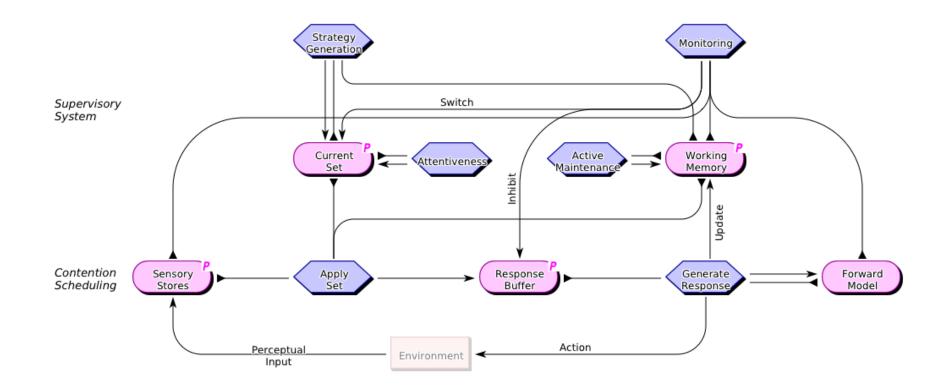
Augmenting Contention Scheduling 2: Working Memory



Augmenting Contention Scheduling 3: Attentiveness and Active Maintenance

- Working memory decays if not actively maintained:
 - O'Reilly and Frank (2006): Gating switches between WM maintenance and updating
- Working hypothesis: Task set behaves analogously
 - Altmann and Gray (2008): Decay is functional
 - Attentiveness serves the maintenance function for task set
- Cognitive neuroscience evidence:
 - Gating is implemented by the basal ganglia (O'Reilly & Frank, 2006)?
 - Attentiveness is a function of inferior medial PFC (Shallice et al., 2008)?

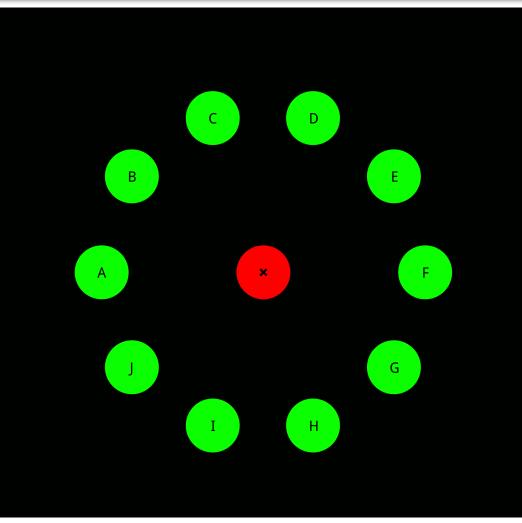
CogSys 2012


Augmenting Contention Scheduling 3: Attentiveness and Active Maintenance

Augmenting Contention Scheduling 4: Strategy Generation

- Intelligent behaviour requires the generation of taskappropriate temporary schemas:
 - We view strategy generation as a separable process
- Strategy generation can involve:
 - Adaptation of an existing strategy
 - Reasoning over hypothetical states of the world
 - Planning
 - Induction and / or insight
- Is strategy generation a function of left LPFC (e.g., Shallice, 1982; Reverberi et al., 2005)?

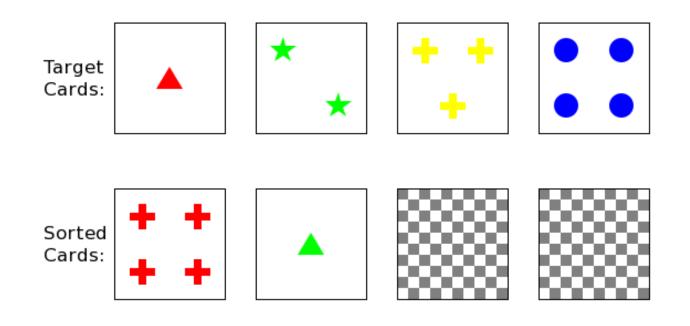
Augmenting Contention Scheduling 4: Strategy Generation

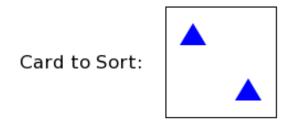

Relation to Standard Accounts of EF

- Separable functions of Miyake et al. (2000) are signals within the wider architecture:
 - Response inhibition, memory updating, task shifting
- Standard accounts fail to consider how EF might interact
- We view monitoring as a separate process with a more general remit (not just WM monitoring)
- More complex EF (e.g., planning) are subsumed by strategy generation:
 - But is strategy generation an homunculus?

Alternative Approaches to PFC Functioning

- Hierarchical approaches:
 - Fuster (1989): PFC sits at the apex of a pyramid rooted in perception and action (cf. Botvinick, 2007)
 - Koechlin et al. (2003): Neuroscience suggests increasing temporal abstraction as one moves forward in the PFC
 - Badre and D'Esposito (2009): Imaging and patient studies suggest a rostro-caudal axis of representational abstraction within PFC
- None of these approaches offers a concrete computational account of complex task performance
 - How can these ideas be cached out in any specific task?


Applications of the Architecture 1: Random Sequence Generation

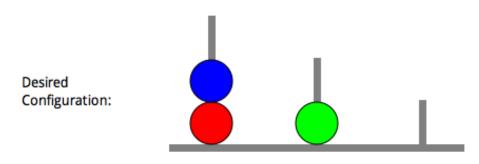


Applications of the Architecture 1: Random Sequence Generation

	R	RNG	RR	AA	OA		
Ctrl	0.962	0.300	0.014	0.259	0.131		
Varying half-life of Working Memory							
H/L=10	0.621	0.398	0.011	0.443	0.059		
H/L=20	0.753	0.278	0.014	0.327	0.108		
H/L=30	0.771	0.263	0.018	0.285	0.131		
H/L=40	0.924	0.256	0.024	0.281	0.141		

Applications of the Architecture 2: Wisconsin Card Sorting Test

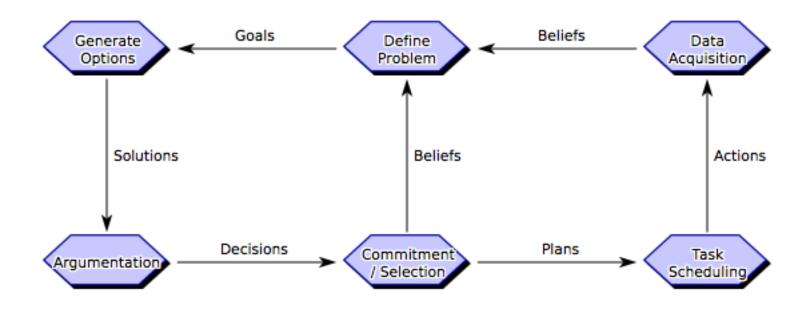




Applications of the Architecture 2: Wisconsin Card Sorting Test

	Cats.	PPC	PPR	Set Loss			
Ctrl	3.9 (0.3)	7.4 (0.8)	1.3 (0.6)	1.0 (0.3)			
IM	2.6 (0.6)	10.6 (1.7)	2.9 (0.9)	2.6 (0.7)			
Decreasing Attentiveness							
Mon = 1.4 Att = 0.4	4.0 (0.7)	6.9 (1.4)	1.3 (0.9)	1.1 (1.1)			
Mon = 1.4 Att = 0.3	2.3 (1.3)	5.6 (4.0)	1.7 (1.4)	3.3 (1.8)			
Mon = 1.4 Att = 0.2	0.7 (0.8)	3.9 (3.9)	3.1 (1.6)	6.1 (1.7)			

Applications of the Architecture 3: Tower of London



Towards an Account of Strategy Generation:

The "Domino" Architecture

The "Domino" Framework (Fox & Das, 2000)

WCST Processing within the Domino: 1

- Initial processing:
 - Define problem \Rightarrow problem is to sort the card
 - Generate options \Rightarrow match to colour, number or form
 - No strong arguments either way \Rightarrow choose at random
- Within the wider architecture:
 - Prediction of feedback may be associated with an action
 - Example: We think the rule is "match to colour", so we place the current card (two blue triangles) under four blue circles and predict that feedback will be positive

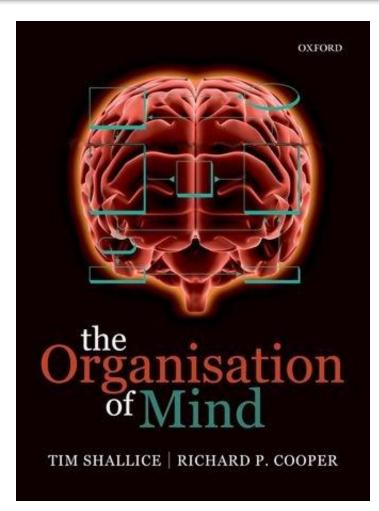
WCST Processing within the Domino: 2

- Following positive feedback:
 - Feedback is as predicted strategy generation is not invoked
- Following negative feedback:
 - Feedback is not as predicted strategy generation is invoked and the current sorting method is rejected
 - Feedback provides an argument against the previous sorting method
 - Select a method with positive arguments (or no negative arguments)

Comparison with Other Approaches

- Comparison with ACT-R:
 - ACT-R is built on a production system model of memory and problem solving
 - It can simulate RNG and WCST performance, but ...
 - No separable processes of monitoring, task setting, etc.,
 - More generally, no special-purpose mechanisms to support EF
- Comparison with EPIC (Executive Process Interactive Control):
 - Built largely on requirements of PRP effects
 - Executive component consists of preprogrammed strategies to avoid simultaneous use of limited perceptual/motor resources
 - Again, no specific mechanisms to address response inhibition, etc.

Summary and Conclusions: 1


- The schema-based IA model of routine action selection provides a viable account of reactive behaviour
- The account is supported by error data from neurologically healthy individuals and a variety of groups of neuropsychological patients
- The IA model may be modulated by a structured higher-level system in order to generate non-routine, deliberative behaviour

Summary and Conclusions: 2

- Components of the higher-level system include:
 - Monitoring, working memory, strategy generation, and processes related to active maintenance of and attentiveness to buffer elements
- Strategy generation need not be considered a homunculus:
 - The domino framework provides a viable decomposition

Acknowledgements

- Thanks to:
 - Tim Shallice
 - John Fox
 - Pete Yule
 - Eddy Davelaar
 - Karolina Wutke
 - Hala Alireza

