

RADHAR: Robotic ADaptation to Humans Adapting to Robots

www.radhar.eu

Joris De Schutter, Eric Demeester, Alexander Hüntemann, Emmanuel Vander Poorten

2. Current state of RADHAR

3. Conclusions and future work

Vision: Robotic ADaptation to Humans Adapting to Robots

heterogeneous user groups with (time)varying skills

robots adapting to humans' signals and responses

Requires life-long adaptation between two interacting learning systems (human & machine)

dynamic, 3D environments

Concrete application domain: wheelchair navigation assistance

- Difficulties performing common manoeuvres: avoiding obstacles, driving through doorways, docking at tables
- Danger when moving to more complex environments: crowds, outdoors, 3D
- Representative for target public: varying skills and abilities

Expected contributions:

- Online 3D environment perception at 10 Hz
 - local map construction
 - traversability analysis
 - Detection & prediction of dynamic obstacles
- Driver perception
 - vision (attention, posture...)
 - haptic interaction
 - online user modelling
- Plan recognition (intention estimation)
- Shared control decision making at 5 Hz
- Design and implementation of a repeatable benchmark test to evaluate driver navigation assistance system

Consortium:

NMSC, Nationaal Multiple Sclerosis Centrum V.Z.W

Windekind, school for children with disability

1 research institute

3 universities

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

3 companies

General overview of RADHAR framework

Environment perception

- SLAM
 - Input: sensor data (cameras, laser, odometry, imu)
 - Determine relative offset of sensor poses
 - Integrate multiple sensor readings into a map
 - Open source library "OctoMap" (OctTree)

Environment perception

- Detection of dynamic obstacles
 - People
 - Wheelchairs
 - Dogs

General overview of RADHAR framework

Driver perception

Driver modelling and plan recognition

Recognizing navigation plans:

- 1. Generate all possible safe trajectories (plan generation)
- Consider user's driving abilities (user modeling)
- Combine present and past driving information (temporal reasoning)

Driver perception

- Human body and attention modelling
 - Human Body Detection and safety volume check
 - 3D Head Detection and Pose Estimation
 - Eye Detection

General overview of RADHAR framework

- Shared control: haptic joystick
 - Fast bilateral communication channel

3. Conclusions and future work

Iterative evaluation by user groups

Integration of modules

- Trajectories that consider dynamic obstacles
- Incorporation of attention information

Shared control

- Integration of intention estimation with haptic control
- Use of probabilistic decision making POMDP

3. Conclusions and future work

Robotic ADatation to Humans Adapting to Robots

- Life-long adaptation between two interacting learning systems (human & machine)
- Heterogenous wheelchair user population, driving in dynamic and populated environments

www.radhar.eu

