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Xperience: Problem and Approach 

• State of the Art (developmental approach): Exploration of 
the world allows acquiring grounded and robust cognitive 
representations. This is an “outside-in”, data-driven 
process. 

• Human cognitive ability: We are able to also use 
generative mechanisms based on (e)Xperience for 
knowledge extension.  
– Advantage: This is an “inside-out”, model-driven process and 

much faster! 

 

Approach:  XPERIENCE will implement a complete robot 
system combining developmental with generative 
mechanisms for automating introspective, predictive, and 
interactive understanding of actions and dynamic situations. 
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Main Novelty of Xperience 

 

Structural Bootstrapping 

An explicit mechanism for generative 
model construction used for internal 

simulation to extend knowledge 
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Structural Bootstrapping 

• The process of structural bootstrapping compares a 
newly observed entity to a model of  experienced 
entities to understand the novel situation and predict 
consequences of actions. 
 

• The concept is taken from human language 
acquisition 

– Example: Knowledge of “Fill a bottle with water”, allows 
you to infer the role of xxx as something that can be filled 
with water when hearing the sentence “Fill the xxx with 
water”. 

 

• Xperience transfers this concept to the full spectrum 
of cognitive robotics problems. 
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Examples for Structural Bootstrapping 

1. Language domain: Knowing the grammar of English and the 
category and meaning of the surrounding words in a 
sentence allows identification of the category and semantic 
type of an unknown word. 

 

2. Sensorimotor domain: Knowing how to peel potatoes with a 
knife, significantly aids one in learning how to use a 
potato‐peeler.  A single demonstration enables 
understanding in terms of an existing theory of potato 
peeling, and makes the peeler available for generalization to 
other plans (other potatoes and other vegetables).  
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Major Scientific Questions 

1. How to improve exploration based knowledge 
acquisition (“outside-in” stage)? 
 

2. How to implement the generative process of structural 
bootstrapping (“inside-out” stage)? 
 

3. How to combine these two mechanisms in a dynamically 
stable process? 
 

4. How to predict other agents, leading to advanced 
abilities to cooperate, interact and communicate?  
 

5. How to integrate  a complete embodied cognitive 
system?  
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OACs as representations in Xperience 

• Object-Action Complex (OACs, pronounced “oaks”)  
– Grounded abstractions of  sensorimotor processes 

– Describes how an object is affected by an action 

– Can be executed to actually do it 

– Allows reasoning based on experience 

– Combines notions of 
• affordances (perception) 

• prediction (action, state transitions) 

• reasoning (~STRIPS) 

• OACs as basis for symbolic representations of 
sensorimotor experience and behavior.  

Krüger et al. 2011. Object–Action Complexes: Grounded abstractions of  sensory–motor processes, 
RAS, 59(10):740-757, 2011 



8 

The XPERIENCE Cognitive Architecture 
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OACs on all levels 

Linguististic 
Representation 

Task 
Representation 

Motor 
Representation 

Semantic Object-
Action Graphs 

Object-Action 
Graphs 

Motion 
Graphs 

“Sentence” of OACs 

Goal-directed 
actions  prediction  

Reflexes (grasping, 
pushing) 
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Development and Structural Bootstrapping 

Guerin, Kruger and Kraft (submitted). A Survey of the Ontogeny of  Tool Use: from Sensorimotor Experience 
to Planning 
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Learning hierarchical and probabilistic sensory-motor spaces:    
Early Cognitive Vision (ECV) x Probabilistic Grasp Functions (PMFs) 

• ECV provides  
– a deep hierachical, view point 

invariant, rich, explicit visual 
representation 

• PMFs  
– provide a probabilisitc, complete 

and structured action 
representation 

• OACs 
– provide the required framework 

for generating, storing and 
utilizing sensory-motor data 

• Structural booststrapping on a 
sensory-motor level 
– searches in the cross space ECV x 

MD for relevant structures 
– to refine existing and create new 

OACs 

ECV                   x                MD 



12 

Machine Learning techniques for exploration-based … 

look

inv kinematics
controller

visually identified target, 
e.g. using motion 

Learning 

+skin 

Learning 

Learning to reach from optical flow data and self-
calibration (plot shows the  desired vs. learnt 
compensatory signals during reaching tasks) 
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Finding Structure in Objects x Features x Actions 

• Predict highly interdependent 
relations between objects 
and actions 

– Identify relevant features 
determining the relations 

– Use known objects (and their 
interrelations)  to predict 
properties and affordances of 
unknown objects (even if they 
share features only indirectly) 

• Methods to collect 
representative sample data 
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Generalizing Objects by Analyzing Language (“GOAL”) 

Different 
Example 
 
What can be 
peeled with 
what? + 

+ 

Category of the „Peeling-OAC“ 

Action 
Para- 

meterization 

Objects for Peeling 

Objects to be Peeled 

Image Data Base 

Action 
Para- 

meterization 
+ 

Retrieve Action Parameterization Search for these objects in the scene 
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Generalizing Objects by Analyzing Language (“GOAL”) 

For Example asking the robot: 

   What can be cut with what? 
 

(without having seen any of the objects before!) 

Algorithm: Generalize, starting with the 
sentence: 

 “Cut the salami with a knife” 

use the Internet to replace nouns in this 
sentence and then attach images to the 
new nouns (again from the internet) . 

Store a verb-labeled “Picture Book” 
of what can be cut with what. 
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Pushing reflex for learning object representations 

• Predefined (innate) 
pushing behavior 

• Triggered by regular 
image structures 

  

Generate object
hypotheses

Try to push one

Push the
object again

Check if
it moved as a 

rigid body

Verify and 
accumulate 

features

no

yes

Discover unknown objects
Learn visual multi-view 

representation

• Data accumulation 
for learning  
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Switching Motor Primitives in Collaborative Tasks 

• Data acquisition by kinesthetic guiding. 

• Real-time generation of Dynamic 
Movement Primitives (DMPs) by Gaussian 
process regression. 

• Updating and switching to new motor 
primitives based on force sensing enables 
collaborative task execution. Training trajectories 

On-line generalization and switching 
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Tightly-coupled physical human-robot interaction 

8x 

Coaching through tightly-coupled 
interaction 

Cooperative manipulation of large objects 

1x 

Use human motion models and sensorimotor experience for 
prediction and role assignment in tightly coupled cooperative 
tasks 
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Language and planning domain 

• Working demonstrations 
of bootstrapping in both 
supervised and semi-
supervised language 
learning 

 

 

• PKS planner to support 
noisy numerical 
properties 

• Learning Action 
Semantics 
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Scenario: “Human Living Space” 

• Multiple agents performing exploration and learning 
from demonstrations using structural bootstrapping 

 

• We investigate: 
– bimanual manipulation and grasping 

– robot-robot interaction  

– human-robot interaction and communication  

 

• Robots will interact with humans for: 
– learning and execution of a cooking recipe  

– clearing and rearranging a room in cooperation with a 
human 
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Robot Platforms in Xperience 
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