

Cognitive Robotic Surgery: Participation to EUROSURGE

Paolo Fiorini

Altair Robotics Laboratory Department of Computer Science University of Verona, Italy

Summary

- My understanding of Cognitive Surgical Robotics
- How the EU has sponsored this area
- Key issues
- Conclusions

Data-driven Robotic Surgery

Vienna, February 22-23, 2012

Robotic Hardware

Need new robots and controls to support data flow

Software Applications

Schedule of (some) EU Projects on Robotic Surgery

	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Accurobas										
Robocast										
Araknes				1	1	1				
Safros										
Active										
lsur										
Eurosurge										
uRalp										
Stiff-Flop							1	1		

AccuRobAs Project (2006-2009)

Robot Assisted Laser Osteotomy

Minimally Invasive Robotic Surgery Demonstrator

- Pre-operative Phase
 Peri-operative Phase
 Intro operative Phase
- Intra-operative Phase
 - Palpation
 - Motion Compensation

SAFROS: Patient Safety in Robotic Surgery (2010-2013)

FP7-ICT-2009-4-248960

Analysis of two different procedures

Performed with two different robots

- Define patient safety in the context of robotic surgery
- Measure how technology can improve it

I-SUR: Intelligent Surgical Robotics (2011-2014)

FONDAZIONE CENTRO S. RAFFAELE DEL MONTE TABOR

The Intervention Centre

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FP7-ICT-2009-6-270396

Automating tasks of increasing complexity

Medical context of puntcturing

EuRoSurge: European Robotic Surgery (2011-2013)

Project Objectives

- 1. Identification of the key European players in surgical robotics, (e.g. technological players, skilled end-users and EU funded projects) from which to derive the *applicable device/solutions*;
- 2. Identification of the key European players in cognitive sciences relevant to surgery, from which to derive *the applicable methods*;
- 3. Creation of a **glossary/ontology** for cognitive surgical robotics to specify the *interconnection among devices and methods*;
- 4. Specification of a **reference architecture** for cognitive surgical robotics on which *to test the device/method connections*;
- 5. Formulation of procedures for validation of surgical robots, their architectures and composing modules;
- 6. Identification of non-technical roadblocks, e.g. patents, ethical and legal aspects.

Initial Efforts

- 1. Census of laboratories involved in robotic surgery
- 2. Development of a portal for glossary/ontology definition, linked to other similar efforts
- 3. Development of a ROS/Orocos based architecture for modularity and validation
- 4. Survey of validation benchmarking methods
- 5. Cooperation with lawyers to assess regulatory and legislative aspects of new technologies
- 6. Involvement of extra-European partners as advisors to the project, JPL and Chonnam National University (South Korea)

Cognition should aim at Patient Safety

Cognition should improve:

- Medical image processing: segmentation and validation
- > Model computation: techniques, calibration, hardware
- Simulation and planning: trajectories and virtual fixtures
- Perception: haptics, 3D vision, acoustic
- Execution: new surgical robots, automation & control
- > Training: skills, rules and knowledge for these technologies
- Support through European projects

Cognitive Aspects of Data-driven Robotic Surgery

Virtual model creation

Each step corresponds to a software module

However, how do we validate the segmentation?

Typical performance: easy environments

Task: countour an epatic tumor by 6 different radiologists

Typical performance: more complex environments

Task: contour pancreatic parenchyma

Consensus on healthy organs

Task: contour healthy pancreatic parenchyma (6 different radiologists)

Consensus on pathological organs

Task: contour healthy pancreatic parenchyma (6 different radiologists)

Segmentation Validation of Pathology?

Model generation depends on the radiologist: we are investigating what are the factors influencing such largely different diagnosis

Cognitive Aspects of Data-driven Robotic Surgery

Vienna, February 22-23, 2012

Embedding Cognition in Simulator

- Should we design for "realism" by achieving:
 - > dynamic behaviour of soft tissues,
 - haptic frame-rate
 - realistic zooming
 - surgical procedures
- or maintain a "cartoonlike" appearance?

Is the Uncanny Valley a real problem?

Organ Reconstruction

- >Aiming at automatic planning or intra-operative assistance
- Tradeoff between computational complexity and errors
- >Two representations:
 - Graphical
 Physical
 Optimized

Simulation of Cutting Action

Clamping

Force Feedback: yes or no?

Current system lacks haptics:

Surgeons who use it are happy

>Surgeons who do not use it would like to have it

Robot strong enough to damage tissues

>Out of sight motion difficult to control (navigator)?

Research issues:

>Can FFB be substituted by visual cues?

How would synchronization affect perception?

>How is perception affected by sampling time (1KHz)?

>How do you satisfy regulatory issues?

> Autonomous motions

Software validation

Cognitive Aspects of Data-driven Robotic Surgery

Vienna, February 22-23, 2012

Simplifying Cognition with Sensor Data Fusion

Cognitive Aspects of Data-driven Robotic Surgery

Vienna, February 22-23, 2012

The Surgenius Surgical Robot

System Dexerity

Surgenius Beta

Robot Modeling and Monitoring

Automation of Percutaneous Kidney Cryoablation (US-CT-MRI Guided)

Goal Model decomposition

Goal Model operationalization

UML Structural Model

Puncturing Task

UML State Diagram: hierarchical state machine

Task Planning and Execution

Cognitive Aspects of Data-driven Robotic Surgery

Vienna, February 22-23, 2012

Conceptual Evaluation Sequence

Dexterity training

EuRoSurge: Please Contribute !

www.eurosurge.eu