
 



 

What controls selection of information from visual image? 

 

 

Evidence for an approach to selection in terms of  

modules, rewards, uncertainty, and prior beliefs. 
 



To understand human behavior, experimenter typically 

manipulates attention via instructions, or manipulates  

stimuli to capture attention. 

 

In natural behavior, selection and timing under subject’s  

control. 
 

 



What underlies the momentary decisions of where/when to saccade? 

Eye movements: overt indicator of attentional allocation 



Immediate behavioral goals govern attentional selection. 

 

- where to attend, when to attend, and what information  

to get. (Plate for knife placement, jar rim for lid target, lid for pick-up.) 

 

How does this come about? 

 

Hypothesis: task control results from reward-based learning. 



target selection 

depends on expected value 

signals to muscles 

Reward sensitivity of Saccadic Circuitry 

Neurons at all levels of saccadic eye movement circuitry are sensitive to 

reward.  

Neural basis for reinforcement learning models of gaze behavior. (Schultz, 

2000) 

Dopaminergic neurons 

in basal ganglia signal 

expected reward 

LIP 



Monkey makes a saccade to a stimulus - some directions are rewarded. 

 

Cells in caudate signal both saccade direction and expected reward. 

Hikosaka et al, 2000 



   Virtual Humanoid has 

a small library of 

simple visual  

behaviors: 

– Sidewalk Following 

– Picking Up Blocks 

– Avoiding Obstacles 

 

Each behavior uses a limited, task-relevant selection of visual 

information from scene. 

Behaviors have different priority/ reward value. 

Walter the Virtual Humanoid 

Sprague, Ballard, & Robinson TAP (2007) 

R L Modeling of Gaze Control 

Neural reward machinery provides a basis for RL models. 



obstacles 

sidewalk 

litter 

Controlling the Sequence of fixations 

Gaze target is chosen based on both reward and uncertainty. 



Reward effects in neurons have been observed with very simple choice  

response paradigms eg “look to left target for high reward”. 

 

But eye movements are for getting information and are not directly  

rewarded in natural vision. 

 

Need evidence for task (reward-based) control of gaze/attention in  

natural behavior. 

What about human behavior? Any evidence for role of reward? 



Gaze allocation when walking in a real environment 
 

Things to do: control direction, avoid obstacles, foot placement, 

characterize surroundings etc    

Hypothesis: normal vision involves sets of sub-tasks or modules – need to 

 allocate attention effectively between sub-tasks. 

Portable ASL eyetracker 

Oval path around large room 

pedestrians 

(Jovancevic & Hayhoe, 2009 J Neurosci) 



How are gaze targets chosen? 

Dynamic environments are tricky – timing of fixations more 

critical than in static scenes.  



Occasionally some pedestrians either stopped for 1 
sec or veered on a collision course with the subject 
 

3 pedestrians behaved in characteristic ways: 
 

  Rogue pedestrian – always stops/veers 

  Safe pedestrian – never stops/ veers 

  Unpredictable pedestrian – stops/veers 50% of time 

 

 

 

Manipulation of behavioral relevance (reward weight) 
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Fixation probability depends on behavioral relevance  

(subjective value) and probability of veering/stopping 

Veering (risky) 

Stopping (less risky) 

0 0.5 1.0 

(Probability is computed during period in the field of view, not just 

 collision interval.) 

 

Event Probability 



    Almost all of the fixations on the Rogue were made 

before the veering onset (92%). 

 

   Thus gaze, and attention are anticipatory, based on 

history of events, not a result of attentional capture 



 

Gaze behavior based on expectation, not on veering event. 

Probability of fixating unpredictable pedestrian similar, 
whether or not pedestrian actually veers on that trial. 
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Gaze behavior changes rapidly  with experience (4-5 encounters):  

priorities re-allocated depending on behavioral relevance 

prior prior 

Fixations on Rogue get longer/earlier, on Safe shorter/later 

 

Lap 1-4 Lap 5-8 Lap 9-12 Lap 1-4 Lap 9-12 Lap 5-8 

Attention/gaze depends on reward probability (expected value) 

N=5 

 Duration  Latency 



Gaze priorities change when another task is added. 
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added task 

original task 

All fixations short duration, fixations on Safe deferred. 

Sharing attention between tasks 



 Fixations modulated by task importance/value (reward, 

and probability of reward). This implicates reinforcement  

learning models to account for control of attention and gaze. 

 

Subjects learn the statistical structure of the 

world and allocate attention and gaze accordingly. 

 

Control of gaze, and attention, is proactive, not reactive. 

 

Subjects behave very similarly despite unconstrained  

environment and absence of instructions. 



 

In walking paradigm, gaze behavior was anticipatory. 

Fixations on Rogue almost always occurred before 

veering event.  

Fixations were based on predicted behavior. 

Why? 

Sensory delays make early planning of eye movements 

important/necessary. 



What is the basis of prediction? Idea of Internal Models 

 

In the case of body movements, forward models of body’s dynamics 

predict somatosensory consequences of movements (Wolpert et al, 

1998). 

 

P 

P 
^ 

Motor system 

Forward model 

u(t) y(t) 

Motor command Sensory feedback 

(reafference) 

Predicted sensory  

feedback 

 

y(t) 
^ 

Efference 

copy 

Rapid comparison of actual with expected feedback circumvents delays 



Internal models of visual world? 

For example, use looming information to compute “time-to-contact” 

to control interception/braking; “focus of expansion” to control 

heading.  

 

That is, extract a “control variable” 

Many actions can be controlled by the momentary visual signals in the 
image. (Warren, 2006) 

Advantage: computational efficiency. 

Evidence to the contrary.. 



In natural movements, do we need internal models of visual 
image to generate eye movements in advance of events in the 
scene? 

 

What is the nature of these internal models?  

 



Virtual racquetball:  
Nvis helmet, Arrington eye-tracker, PhaseSpace head/hand/racquet 

tracking, Open Dynamics Engine to control ball and racquet interactions 

Gabe Diaz 





Balls varied in vertical velocity and elasticity.  

Velocity varied from trial to trial, elasticity was constant within a block. 

Height after bounce predictable from current trial and previous trials  

within a block. 

High elasticity 

Low elasticity 
Range of starting 

locations and bounce 

locations  



Saccade to a location ahead of the bounce 



Ball location relative to gaze 

at time of bounce 

 

 

Subjects’ gaze predicts location of ball after it bounces. Prediction is based 

 on knowledge of elasticity, (based on history) plus velocity.  

Ball location relative to gaze 150 msec 

later. 

 

Ss adjust predicted gaze point for  

elasticity and velocity. 

 

 



High elasticity 

Low elasticity 

Location of saccade precisely adjusted to 

compensate for  elasticity and pre-bounce velocity 



Vertical velocity 

 
Gaze to ball distance at minimum 

Gaze to ball distance at time of bounce 

High elasticity 

Low elasticity 

Predictive Saccades: Location 

Ball then passes close to gaze. 

Location of saccade precisely 

adjusted to compensate for  

elasticity and pre-bounce velocity 

Subjects saccade to location  

above the bounce point. 

Vertical velocity 



High elasticity 

Low elasticity 

Predictive Saccades: Timing 

Earlier saccade for more elastic balls (prior trials).  

Earlier saccade for high velocity balls (current trial). 

Vertical velocity 



High elasticity 

Low elasticity 

Predictive Saccades: Timing 

Time of saccade related to post-bounce speed 



Anticipatory saccades reveal that gaze is planned for a predicted  

state of the world. 

Internal Visual Models Allow Prediction 

Predictions must be based on some kind of internal model of 

visual events.  

 

 

Note that predictions are very precise and similar between 

subjects, so model is very good!! 



What do we know about the internal model? Evidence suggests it is 

high level and complex (angle, speed, elasticity, 3D, gravity, 

viewpoint independent).  

 

In addition to mitigating the problem of visual delays, another value 

of experience-based internal visual models is that it allows better 

coordination of eye, head, arm, and body movements.  

 

In reaching, evidence for the optimal Bayesian integration of current 

visual information with visual priors, (Koerding & Wolpert, 2004; Brouwer & 

Knill, 2007; Tassinari et al, 2006)  

Perhaps a similar optimal weighting occurs with saccadic eye 

movements.  

Internal Models 



likelihood 

prior 

Wolpert, 2005 

posterior 

Hypothesis: Bayesian prediction of future state 



Complex behavior can be broken down into sub-tasks or modules. This is 

consistent with observations of natural behavior. 

 

Execution of sub-tasks/modules is learned and is governed by reward.  

Supported by gaze allocation in walking. 

 

Learnt statistics/ priors about world state govern allocation of attention.  

Supported by both walking and racquetball. 

 

Summary 
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