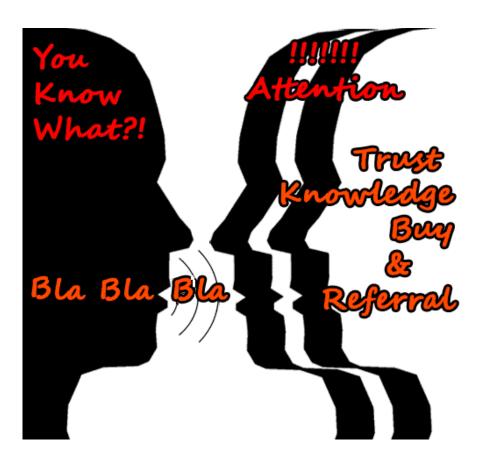
Learning Influence Probabilities in Social Networks

Amit Goyal¹ Francesco Bonchi² Laks V. S. Lakshmanan¹

U. of British ColumbiaYahoo! ResearchU. of British Columbia

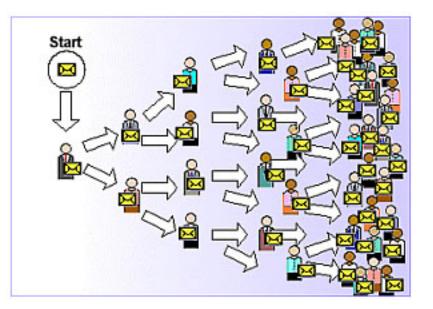
Word of Mouth and Viral Marketing

- We are more influenced by our friends than strangers
- 68% of consumers consult friends and family before purchasing home electronics (Burke 2003)



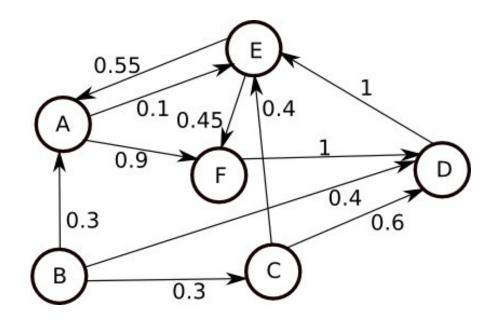
Viral Marketing

- Also known as Target Advertising
- Initiate chain reaction by Word of mouth effect
- Low investments, maximum gain



Viral Marketing as an Optimization Problem

- Given: Network with influence probabilities
- Problem: Select top-k users such that by targeting them, the spread of influence is maximized
- Domingos et al 2001, Richardson et al 2002, Kempe et al 2003



How to calculate true influence probabilities?

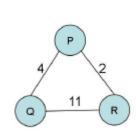
Some Questions

- Where do those influence probabilities come from?
 - Available real world datasets don't have prob.!
- Can we learn those probabilities from available data?
- Previous Viral Marketing studies ignore the effect of time.
 - How can we take time into account?
 Do probabilities change over time?
 - Can we predict time at which user is most likely to perform an action.

What users/actions are more prone to influence?

Input Data

- We focus on actions.
- Input:
 - Social Graph: P and Q become friends at time 4.
 - Action log: User P performs actions a1 at time unit 5.



User	Action	Time
Р	a1	5
Q	a1	10
R	a1	15
Q	a2	12
R	a2	14
R	a3	6
Р	а3	14

Our contributions (1/2)

- Propose several probabilistic influence models between users.
 - Consistent with existing propagation models.
- Develop efficient algorithms to learn the parameters of the models.
- Able to predict whether a user perform an action or not.
- Predict the time at which she will perform it.

Our Contributions (2/2)

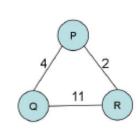
Introduce metrics of users and actions influenceability.

- High values => genuine influence.
- Validated our models on Flickr.

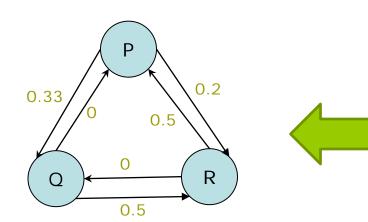
Overview

Input:

- Social Graph: P and Q become friends at time 4.
- Action log: User P performs actions a1 at time unit 5.



User	Action	n Time	
Р	a1	5	
Q	a1	10	
R	a1	15	
Q	a2	12	
R	a2	14	
R	a3	6	
Р	а3	14	



Influence Models

University of British Columbia, Yahoo! Research http://people.cs.ubc.ca/~goyal

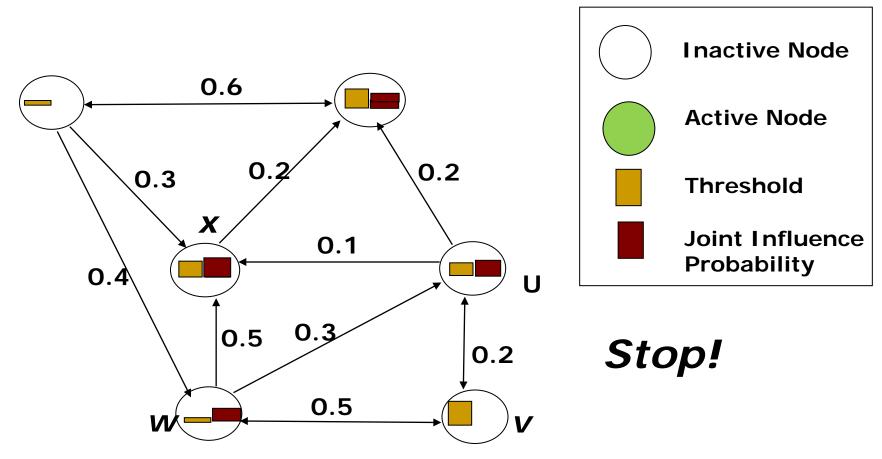
Background

General Threshold (Propagation) Model

- At any point of time, each node is either active or inactive.
- More active neighbors = > u more likely to get active.
- Notations:
 - $S = \{ active neighbors of u \}.$
 - $p_u(S)$: Joint influence probability of S on u.
 - Θ_u : Activation threshold of user *u*.

• When $p_u(S) > = \Theta_{u'}$ u becomes active.

General Threshold Model - Example



Source: David Kempe's slides

Our Framework

Solution Framework

Assuming independence, we define

$$p_u(S) = 1 - \prod_{v \in S} (1 - p_{v,u})$$

- $p_{v,u}$: influence probability of user v on user u
- Consistent with the existing propagation models
 monotonocity, submodularity.
- □ It is incremental. i.e. $p_u(S \cup \{w\})$ can be updated incrementally using $p_u(S)$ and $p_{w,u}$

• Our aim is to learn $p_{v,u}$ for all edges.

Influence Models

Static Models

 Assume that influence probabilities are static and do not change over time.

Continuous Time (CT) Models

- Influence probabilities are continuous functions of time.
- Not incremental, hence very expensive to apply on large datasets.

Discrete Time (DT) Models

- Approximation of CT models.
- Incremental, hence efficient.

University of British Columbia, Yahoo! Research

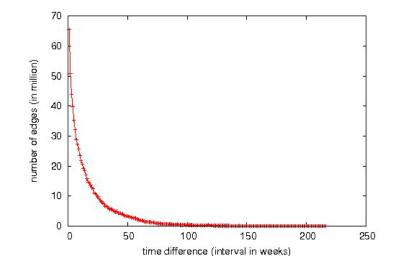
Static Models

- 4 variants
 - Bernoulli as running example.
- Incremental hence most efficient.
- We omit details here

Time Conscious Models

- Do influence probabilities remain constant independently of time?
- We propose
 Continuous Time (CT)
 Model
 - Based on exponential decay distribution

NO



Continuous Time Models

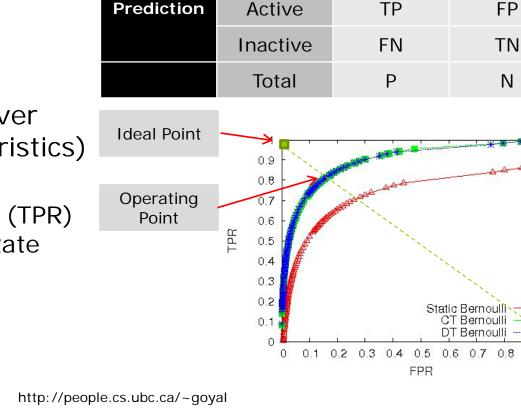
- Best model.
- Capable of predicting time at which user is most likely to perform the action.
- Not incremental
 - Discrete Time Model
 - Based on step time functions
 - Incremental

Evaluation Strategy (1/2)

- Split the action log data into training (80%) and testing (20%).
 - User "James" have joined "Whistler Mountain" community at time 5.
- In testing phase, we ask the model to predict whether user will become active or not
 - Given all the neighbors who are activeBinary Classification

Evaluation Strategy (2/2)

- We ignore all the cases when none of the user's friends is active
 - As then the model is inapplicable.
- □ We use ROC (Receiver **Operating Characteristics**) curves
 - True Positive Rate (TPR) vs False Positive Rate (FPR).
 - TPR = TP/P
 - FPR = FP/N



Reality

Active

0.9

Inactive

FP

Ν

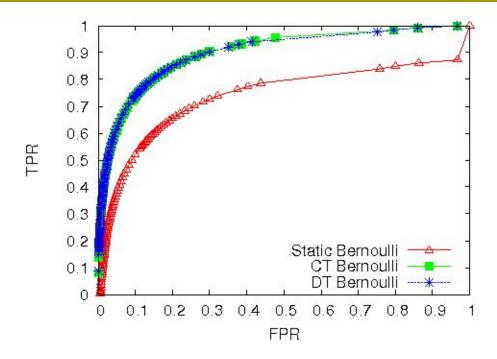
- Special emphasis on efficiency of applying/testing the models.
 - Incremental Property
- In practice, action logs tend to be huge, so we optimize our algorithms to minimize the number of scans over the action log.
 - Training: 2 scans to learn all models simultaneously.
 - Testing: 1 scan to test one model at a time.

Experimental Evaluation

Dataset

- Yahoo! Flickr dataset
- "Joining a group" is considered as action
 - User "James" joined "Whistler Mountains" at time 5.
- □ #users ~ 1.3 million
- #edges ~ 40.4 million
- Degree: 61.31
- □ #groups/actions ~ 300K
- #tuples in action log ~ 35.8 million

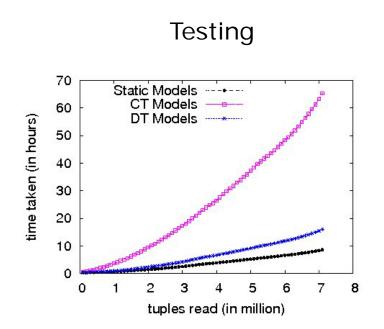
Comparison of Static, CT and DT models



- Time conscious Models are better than Static Models.
- CT and DT models perform equally well.

University of British Columbia, Yahoo! Research

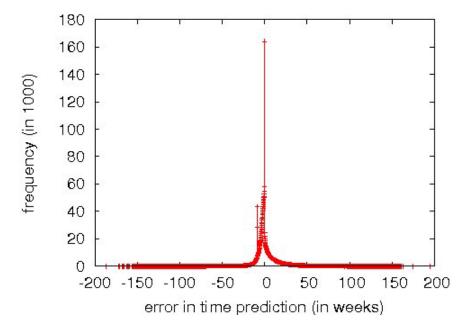
Runtime



Static and DT models are far more efficient compared to CT models because of their incremental nature.

Predicting Time – Distribution of Error

Operating Point is chosen corresponding to TPR: 82.5%, FPR: 17.5%.

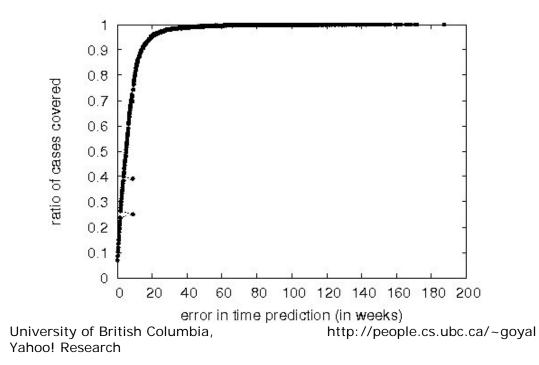


- X-axis: error in predicting time (in weeks)
- Y-axis: frequency of that error
- Most of the time, error in the prediction is very small

University of British Columbia, Yahoo! Research

Predicting Time – Coverage vs Error

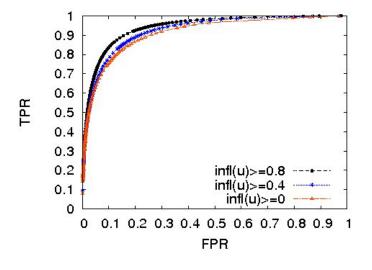
Operating Point is chosen corresponding to TPR: 82.5%, FPR: 17.5%.



- A point (x,y) here means for y% of cases, the error is within ± x
- In particular, for 95% of the cases, the error is within 20 weeks.

User Influenceability

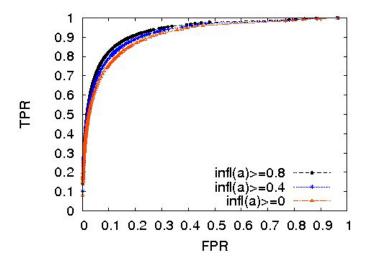
- Some users are more prone to influence propagation than others.
- Learn from Training data



Users with high influenceability => easier prediction of influence => more prone to viral marketing campaigns.

Action Influenceability

 Some actions are more prone to influence propagation than others.



Actions with high user influenceability => easier prediction of influence => more suitable to viral marketing campaigns.

Related Work

- Independently, Saito et al (KES 2008) have studied the same problem
 - Focus on Independent Cascade Model of propagation.
 - Apply Expectation Maximization (EM) algorithm.
 - Not scalable to huge datasets like the one we are dealing in this work.

Other applications of Influence Propagations

- Personalized Recommender Systems
 - Song et al 2006, 2007
- Feed Ranking
 - Samper et al 2006
- Trust Propagation
 - Guha et al 2004, Ziegler et al 2005, Golbeck et al 2006, Taherian et al 2008

Conclusions (1/2)

- Previous works typically assume influence probabilities are given as input.
- Studied the problem of learning such probabilities from a log of past propagations.
- Proposed both static and time-conscious models of influence.
- We also proposed efficient algorithms to learn and apply the models.

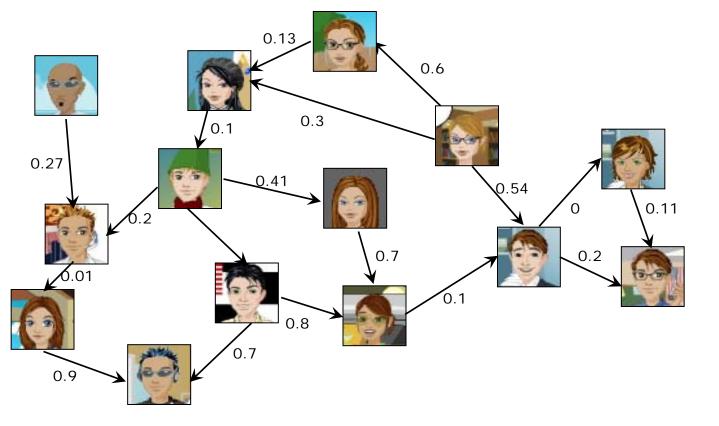
Conclusions (2/2)

- Using CT models, it is possible to predict even the time at which a user will perform it with a good accuracy.
- Introduce metrics of users and actions influenceability.
 - High values => easier prediction of influence.
 - Can be utilized in Viral Marketing decisions.

Future Work

- Learning optimal user activation thresholds.
- Considering users and actions influenceability in the theory of Viral Marketing.
- **Role of time in Viral Marketing**.

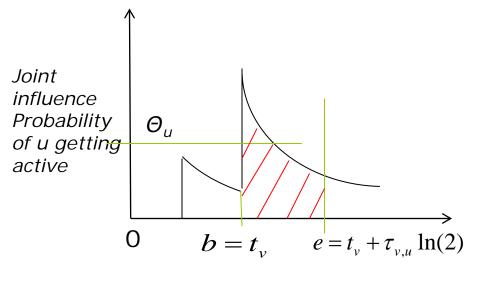
Thanks!!



http://people.cs.ubc.ca/~goyal

Predicting Time

CT models can predict the time interval [b,e] in which she is most likely to perform the action.



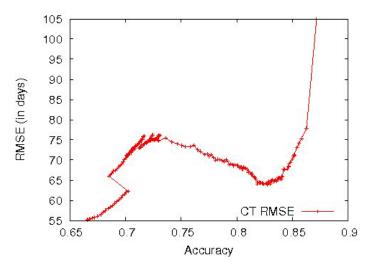
Time ->

- $\tau_{v,u} \ln(2)$ is half life period
- Tightness of lower bounds not critical in Viral Marketing Applications.
- Experiments on the upper bound e.

University of British Columbia, Yahoo! Research

Predicting Time - RMSE vs Accuracy

- CT models can predict the time interval [b,e] in which user is most likely to perform the action.
 - Experiments only on upper bound e.
- Accuracy = $\frac{\# \text{ cases when the prediction of upper bound is correct}}{\# \text{ total cases}}$
- RMSE = root mean square error
- RMSE ~ 70-80 days



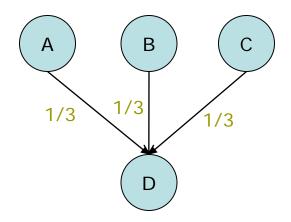
Static Models – Jaccard Index

Jaccard Index is often used to measure similarity b/w sample sets.

• We adapt it to estimate $p_{v,u}$

$$p_{v,u} = \frac{\text{\#of actions propagated from v to u}}{\text{\#of actions performed by v or u}}$$

Partial Credits (PC)



Let, for an action,
 D is influenced by
 3 of its neighbors.

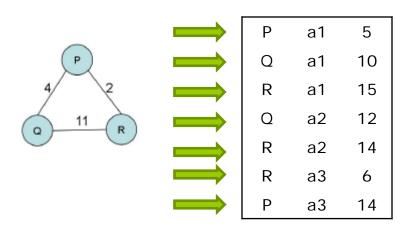
Then, 1/3 credit is given to each one of these neighbors.

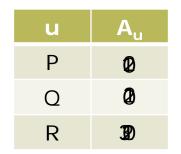
PC Bernoulli $p_{v,u} = \frac{\text{total credits accumulated}}{\text{total number of actions v performed}}$ PC Jaccard $p_{v,u} = \frac{\text{total credits accumulated}}{\frac{\text{total credits accumulated}}{\text{total number of actions v or u performed}}}$

Learning the Models

Parameters to learn:

- #actions performed by each user – A_u
- #actions propagated via each edge – A_{v2u}
- Mean life time $\tau_{v,u}$





	Р	Q	R		
Р	Х	0,6	19,100		
Q	0,0	Х	0,0		
R	Φ,θ	0,0	Х		
$\mathrm{A_{v,u}}$, ${ au_{v,u}}$					

University of British don Pilat Yahoo! Research

Propagation Models

- Threshold Models
 - Linear Threshold Model
 - General Threshold Model

Cascade Models

- Independent Cascade Model
- Decreasing Cascade Model

Properties of Diffusion Models

Monotonocity

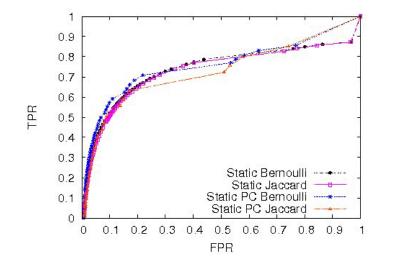
 $p_u(S) \le p_u(T)$ whenever $S \subseteq T$

■ Submodularity – Law of marginal Gain $p_u(S \cup \{w\}) - p_u(S) \ge p_u(T \cup \{w\}) - p_u(T)$ whenever $S \subset T$

□ Incrementality (Optional) $p_u(S \cup \{w\})$ can be updated incrementally $using_{u}(S) and_{p}$ University of British Columbia, $p_u(S)$ and p_{u} University of British Columbia, $p_u(S)$ and p_{u} University of British Columbia, $p_u(S)$ and p_{u}

42

Comparison of 4 variants



0.9 0.8 0.7 0.6 TPR 0.5 0.4 0.3 DT Bernoulli 0.2 DT Jaccard DT PC Bernoull 0.1 DT PC Jaccard 0 01 02 03 04 0 0.5 0.6 0.7 0.8 0.9 FPR

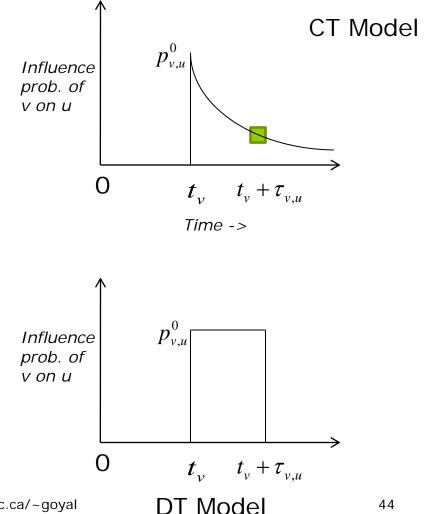
ROC comparison of 4 variants of Static Models

ROC comparison of 4 variants of Discrete Time (DT) Models

- Bernoulli is slightly better than Jaccard
- Among two Bernoulli variants, Partial Credits (PC) wins by a small margin. University of British Columbia, Yahool Research

Discrete Time Models

- Approximation of **CT Models**
- Incremental, hence efficient
- 4-variants corresponding to 4 Static Models



http://people.cs.ubc.ca/~goyal

Overview

- Context and Motivation
- Background
- Our Framework
- Algorithms
- Experiments
- Related Work
- Conclusions

Continuous Time Models

Joint influence probability

$$p_u^t(S) = 1 - \prod_{v \in S} (1 - p_{v,u}^t)$$

Individual probabilities – exponential decay $p_{v,u}^{t} = p_{v,u}^{0} e^{-(t-t_{u})/\tau_{v,u}}$

*p*⁰_{ν,u}: maximum influence probability of v on u
 *τ*_{ν,u}: the mean life time.

- Training All models simultaneously in no more than 2 scans of training sub-set (80% of total) of action log table.
- Testing One model requires only one scan of testing sub-set (20% of total) of action log table.
- Due to the lack of time, we omit the details of the algorithms.