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Word of Mouth and Viral Marketing
 We are more 

influenced by our 
friends than 
strangers

 68% of consumers 
consult friends and 
family before 
purchasing home 
electronics 
(Burke 2003)
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Viral Marketing
 Also known as 

Target Advertising
 Initiate chain 

reaction by Word of 
mouth effect

 Low investments, 
maximum gain
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Viral Marketing as an Optimization 
Problem
 Given: Network with 

influence probabilities
 Problem: Select top-k

users such that by 
targeting them, the 
spread of influence is 
maximized

 Domingos et al 2001, 
Richardson et al 2002, 
Kempe et al 2003
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 How to calculate true influence probabilities?



Some Questions
 Where do those influence probabilities come 

from?
 Available real world datasets don’t have prob.!

 Can we learn those probabilities from available 
data?

 Previous Viral Marketing studies ignore the effect 
of time.
 How can we take time into account?

 Do probabilities change over time?

 Can we predict time at which user is most likely to 
perform an action.

 What users/actions are more prone to influence?
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Input Data
 We focus on actions.
 Input:

 Social Graph: P and Q 
become friends at time 
4.

 Action log: User P 
performs actions a1 at 
time unit 5.

User Action Time

P a1 5

Q a1 10

R a1 15

Q a2 12

R a2 14

R a3 6

P a3 14
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Our contributions (1/2)
 Propose several probabilistic influence models 

between users.
 Consistent with existing propagation models.

 Develop efficient algorithms to learn the 
parameters of the models.

 Able to predict whether a user perform an action 
or not.

 Predict the time at which she will perform it.
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Our Contributions (2/2)
 Introduce metrics of users and actions 

influenceability. 
 High values => genuine influence.

 Validated our models on Flickr.
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Overview
 Input:

 Social Graph: P and Q 
become friends at time 4.

 Action log: User P 
performs actions a1 at 
time unit 5.

User Action Time

P a1 5

Q a1 10

R a1 15

Q a2 12

R a2 14

R a3 6

P a3 14

Influence Models

Q R

P
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Background



General Threshold (Propagation) 
Model
 At any point of time, each node is either active or 

inactive.

 More active neighbors => u more likely to get active.

 Notations:
 S = {active neighbors of u}.
 pu(S) : Joint influence probability of S on u.
 Θu: Activation threshold of user u.

 When pu(S) >= Θu, u becomes active. 
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General Threshold Model - Example
Inactive Node

Active Node

Threshold

Joint Influence 
Probability

Source: David Kempe’s slides
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Stop!

U
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Our Framework



Solution Framework
 Assuming independence, we define 

 pv,u : influence probability of user v on user u
 Consistent with the existing propagation models 

– monotonocity, submodularity.
 It is incremental. i.e.               can be updated 

incrementally using 

 Our aim is to learn pv,u for all edges.

)1(1)( ,uv
Sv

u pSp −∏−=
∈
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Influence Models
 Static Models

 Assume that influence probabilities are static and do not 
change over time.

 Continuous Time (CT) Models
 Influence probabilities are continuous functions of time.
 Not incremental, hence very expensive to apply on large 

datasets.

 Discrete Time (DT) Models
 Approximation of CT models.
 Incremental, hence efficient.
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Static Models
 4 variants

 Bernoulli as running example.
 Incremental hence most efficient.
 We omit details here
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Time Conscious Models
 Do influence 

probabilities remain 
constant 
independently of 
time?

 We propose 
Continuous Time (CT) 
Model
 Based on exponential 

decay distribution

NO
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Continuous Time Models
 Best model.
 Capable of predicting time at which user is 

most likely to perform the action.
 Not incremental

 Discrete Time Model 
 Based on step time functions
 Incremental
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Evaluation Strategy (1/2)
 Split the action log data into training 

(80%) and testing (20%). 
 User “James” have joined “Whistler Mountain” 

community at time 5.

 In testing phase, we ask the model to 
predict whether user will become active or 
not
 Given all the neighbors who are active
 Binary Classification

University of British Columbia, 
Yahoo! Research
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Evaluation Strategy (2/2)
 We ignore all the cases 

when none of the user’s 
friends is active
 As then the model is 

inapplicable.

 We use ROC (Receiver 
Operating Characteristics) 
curves
 True Positive Rate (TPR) 

vs False Positive Rate 
(FPR).

 TPR = TP/P
 FPR = FP/N

Reality

Prediction

Active Inactive

Active TP FP

Inactive FN TN

Total P N

Operating 
Point

Ideal Point
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Algorithms
 Special emphasis on efficiency of applying/testing 

the models.
 Incremental Property

 In practice, action logs tend to be huge, so we 
optimize our algorithms to minimize the number 
of scans over the action log.
 Training: 2 scans to learn all models simultaneously.
 Testing: 1 scan to test one model at a time.
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Experimental Evaluation



Dataset
 Yahoo! Flickr dataset
 “Joining a group” is considered as action

 User “James” joined “Whistler Mountains” at 
time 5.

 #users ~ 1.3 million
 #edges ~ 40.4 million
 Degree: 61.31
 #groups/actions ~ 300K
 #tuples in action log ~ 35.8 million
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Comparison of Static, CT and DT 
models

 Time conscious Models are better than Static 
Models.

 CT and DT models perform equally well.
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Runtime

 Static and DT models are far more efficient compared to CT 
models because of their incremental nature.

Testing
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Predicting Time – Distribution of 
Error
 Operating Point is chosen corresponding to 

 TPR: 82.5%, FPR: 17.5%.

 X-axis: error in 
predicting time (in 
weeks)

 Y-axis: frequency of 
that error

 Most of the time, 
error in the 
prediction is very 
small
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Predicting Time – Coverage vs Error
 Operating Point is chosen corresponding to 

 TPR: 82.5%, FPR: 17.5%.

 A point (x,y) here 
means for y% of 
cases, the error is 
within 

 In particular, for 95% 
of the cases, the 
error is within 20 
weeks.

x±
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User Influenceability

 Users with high influenceability => easier prediction of 
influence => more prone to viral marketing campaigns.

 Some users are more 
prone to influence 
propagation than others.

 Learn from Training data
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Action Influenceability

 Some actions are more 
prone to influence 
propagation than others.

 Actions with high user influenceability => easier prediction 
of influence => more suitable to viral marketing campaigns.
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Related Work
 Independently, Saito et al (KES 2008) 

have studied the same problem
 Focus on Independent Cascade Model of 

propagation.
 Apply Expectation Maximization (EM) 

algorithm.
 Not scalable to huge datasets like the one we 

are dealing in this work.

http://people.cs.ubc.ca/~goyal 30University of British Columbia, 
Yahoo! Research



Other applications of Influence 
Propagations
 Personalized Recommender Systems

 Song et al 2006, 2007
 Feed Ranking

 Samper et al 2006
 Trust Propagation

 Guha et al 2004, Ziegler et al 2005, Golbeck et 
al 2006, Taherian et al 2008
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Conclusions (1/2)
 Previous works typically assume influence 

probabilities are given as input.

 Studied the problem of learning such probabilities 
from a log of past propagations.

 Proposed both static and time-conscious models 
of influence.

 We also proposed efficient algorithms to learn 
and apply the models.
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Conclusions (2/2)
 Using CT models, it is possible to predict 

even the time at which a user will perform 
it with a good accuracy.

 Introduce metrics of users and actions 
influenceability. 
 High values => easier prediction of influence.
 Can be utilized in Viral Marketing decisions.
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Future Work
 Learning optimal user activation 

thresholds.
 Considering users and actions 

influenceability in the theory of Viral 
Marketing.

 Role of time in Viral Marketing.
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Thanks!!
0.13
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Predicting Time
 CT models can predict the time interval 

[b,e] in which she is most likely to 
perform the action.

0

Joint 
influence 
Probability 
of u getting 
active

)2ln(,uvvte τ+=vtb =

Θu

Time ->

 is half life 
period

 Tightness of lower 
bounds not critical 
in Viral Marketing 
Applications.

 Experiments on the 
upper bound e.

)2ln(,uvτ
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Predicting Time - RMSE vs 
Accuracy 
 CT models can predict the time interval [b,e] in which user 

is most likely to perform the action.

 Experiments only on upper bound e.

 Accuracy = 

 RMSE = root mean square error in days

cases total#
correct is boundupper  of prediction   when thecases #

 RMSE ~ 70-80 days

http://people.cs.ubc.ca/~goyal 37University of British Columbia, 
Yahoo! Research



Static Models – Jaccard Index
 Jaccard Index is often used to measure 

similarity b/w sample sets.

 We adapt it to estimate pv,u

uor  by v performed actions of#
u  to vfrom propagated actions of#

, =uvp
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Partial Credits (PC)
 Let, for an action, 

D is influenced by 
3 of its neighbors.

 Then, 1/3 credit is 
given to each one 
of these neighbors.

A B

D

1/3

C

1/3 1/3

performed  vactions ofnumber  total
daccumulate credits total

, =uvp

performedu or   vactions ofnumber  total
 daccumulate credits total

, =uvp

PC Bernoulli

PC Jaccard
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Learning the Models
 Parameters to learn: 

 #actions performed by 
each user – Au

 #actions propagated via 
each edge – Av2u

 Mean life time –

P a1 5

Q a1 10

R a1 15

Q a2 12

R a2 14

R a3 6

P a3 14

u Au

P
Q
R

P Q R

P X

Q 0,0 X

R 0,0 X

Input

01
01

01

0,01,5 0,01,10

2

2

0,01,2

3

2

0,01,8

uv,τ

uv,uv, ,A τ
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Propagation Models
 Threshold Models

 Linear Threshold Model
 General Threshold Model

 Cascade Models
 Independent Cascade Model
 Decreasing Cascade Model
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Properties of Diffusion Models
 Monotonocity

 Submodularity – Law of marginal Gain

 Incrementality (Optional)
can be updated incrementally         

using 

TSTpSp uu ⊆≤  whenever )()(

TS
TpwTpSpwSp uuuu

⊆
−∪≥−∪

whenever 
)(}){()(}){(

}){( wSpu ∪
uwu pSp , and )(
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Comparison of 4 variants

ROC comparison of 4 
variants of Static Models

ROC comparison of 4 
variants of Discrete Time 
(DT) Models

 Bernoulli is slightly better than Jaccard
 Among two Bernoulli variants, Partial Credits (PC) wins by a 
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Discrete Time Models
 Approximation of 

CT Models
 Incremental, hence 

efficient
 4-variants 

corresponding to 4 
Static Models

0 uvvt ,τ+vt

0

Influence 
prob. of 
v on u

uvvt ,τ+vt

DT Model

0
,uvp

0
,uvp

Time ->

CT Model

Influence 
prob. of 
v on u
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Overview
 Context and Motivation
 Background
 Our Framework
 Algorithms
 Experiments
 Related Work
 Conclusions
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Continuous Time Models
 Joint influence probability

 Individual probabilities – exponential decay

 : maximum influence probability of v on u
 : the mean life time.

)1(1)( ,
t

uv
Sv

t
u pSp −∏−=

∈

uvutt
uv

t
uv epp ,/)(0

,,
τ−−=

0
,uvp

uv,τ
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Algorithms
 Training – All models simultaneously in no more 

than 2 scans of training sub-set (80% of total) of 
action log table.

 Testing – One model requires only one scan of 
testing sub-set (20% of total) of action log table. 

 Due to the lack of time, we omit the details of the 
algorithms.
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