he Cyc Lexicon Elizabeth Coppock University of Texas at Austin and Cycorp, Inc. Jozef Stefan Institute, March 19, 2010

Overview

- Natural language microtheories
- Kinds of semantic predicates
- Inflectional and derivational morphology

Themes

- How to modify / add to the Cyc lexicon
- The generative nature of the Cyc lexicon: use of inference rules for deriving new entries

Language Microtheories

- GeneralEnglishMt
 - AmericanEnglishMt
 - BritishEnglishMt
 - IrishEnglishMt
 - NewZealandEnglishMt
- SlovenianMt
- PolishMt

Favour-TheWord

Mt : BritishEnglishMt infinitive : "favour"

Mt : <u>GeneralEnglishMt</u> infinitive : ^(a)"favor"

Mt : BritishEnglishMt massNumber : "favour"

Mt : GeneralEnglishMt massNumber : • "favor"

Lexicon Microtheories

- GeneralLexiconMt
 - EnglishLexiconMt
 - SloveneLexiconMt

- for defining (language-specific) lexicon predicates, e.g. dual
- not for lexical mappings

Overview

- NL microtheories
- Kinds of semantic predicates
- Inflectional and derivational morphology

Two string-concept routes

Kinds of semantic predicates

- nameString-like:
 - string ~ concept
- denotation-like:
 - word ~ concept
- *semTrans (verbSemTrans, etc.):
 word ~ semantic template
- genTemplate, assertTemplate:
 - sentence template ~ concept

nameString

(nameString MarkTwain "Mark Twain") (nameString MarkTwain "Samuel Clemens")

nameString-like predicates

familyName lastName middleName firstName fullName nickNames formerName hipHopMoniker accessFilename atomicSymbol countryCodeDigraph internetCountryCode airportHasIATACode cwEntitled movieTitleString sectionTitle

Lexical Info for ECoppock:

Default generated phrase: "Elizabeth Coppock" (#\$nameString)

Mt: EnglishMt

- (givenNames ECoppock "Elizabeth") A m k
- M(<u>nameString ECoppock</u> "Elizabeth Coppock") A magnetization
- (nameString ECoppock "Liz Coppock") A m Image Ima Image Imag Image Ima Image Imag

Mt: (MtSpace CyclishMt (MtTimeDimFn (IntervalStartedByFn-Inclusive (YearFn 2009))))

- (nameString ECoppock "Elizabeth Coppock, PHD") A m Image Report Report Physical Action (Image Report Physical Action Physic

Mt: EnglishMt

- (genStringAssertion ECoppock)
 - M(<u>nameString</u> <u>ECoppock</u> "Elizabeth Coppock"))

Assertion :

(nameString ECoppock "Elizabeth Coppock, PHD")

in (MtSpace CyclishMt (MtTimeDimEn (IntervalStartedByEn-Inclusive (YearEn 2009))))

Arguments Supporting Assertion :

Argument : Deduction #3497335

(implies)

(and

(isa ?PERSON PhDLevel)
 (givenNames ?PERSON ?GIVEN-NAME)
 (familyName ?PERSON ?FAMILY-NAME)
 (concatenateStrings ?NAME-PLUS ?GIVEN-NAME " " ?FAMILY-NAME ", " "PHD"))
 (nameString ?PERSON ?NAME-PLUS)) in EnglishMt
 (familyName ECoppock "Coppock") in EnglishMt

(givenNames ECoppock "Elizabeth") in EnglishMt

(isa ECoppock PhDLevel)

in (MtSpace CyclistsMt (MtTimeDimEn (IntervalStartedByEn-Inclusive (YearEn 2009))))

:OPAQUE (concatenateStrings "Elizabeth Coppock, PHD" "Elizabeth" " " "Coppock" ", " "PHD") i

Predicate : denotation

arg1lsa	LexicalWord
arg2lsa	: SpeechPart
arg3lsa	: Integer
arg4lsa	:● <u>Thing</u>

Last query in EverythingPSC :

(isa ?ARG1 SpeechPart)

121 answers for ?ARG1 :

Adjective Adjective-Ed Adjective-Gradable Adjective-Ing Adverb AdverbOfFrequency AdverbOfManner AdverbOfPlace AdverbOfTime AgentiveNoun AttributiveOnlyAdjective Aux-Negated AuxVerb BeAux CommonNoun ComparativeAdjective Complementizer ConjunctAdverb Conjunction CoordinatingConjunction CountNoun CountNoun-Feminine CountNoun-Generic CountNoun-Masculine CountNoun-Neuter DeAdjectivalAdjective DeAdjectivalAdverb DeAdjectivalNoun DeAdjectivalVerb DeVerbalNoun DenominalAdjective DenominalAdverb DenominalNoun DenominalVerb Determiner Determiner-Central Determiner-ClassA Determiner-ClassB Determiner-ClassC Determiner-Definite Determiner-Indefinite DeverbalAdjective DoAux DualPronoun ExpletivePronoun FemininePronoun GerundiveCountNoun GerundiveNoun GerundiveNoun-NumberAgnostic HaveAux IndefinitePronoun InfinitiveComp Interjection-SpeechPart MainVerb MasculinePronoun MassNoun MassNoun-Generic Modal Modal-Contracted Modal-Negated NLWordForm NeuterPronoun NonIntersectiveAdjective NongradableAdjective Noun Number-SP ObjectPronoun OrdinalAdjective PluralPronoun PositiveAdjective PossessiveMarker PossessiveMarker-PI PossessiveMarker-Sq PossessivePronoun PossessivePronoun-Post PossessivePronoun-Pre PostQuant-SP Postdeterminer PredicativeOnlyAdjective Preposition Preposition-Directional Preposition-Directional-Atelic Preposition-Directional-Telic Preposition-Duration Preposition-Duration-Atelic Preposition-Duration-Telic Preposition-Locative Preposition-Of Preposition-Spatial Preposition-Temporal Preposition-TimePoint Pronoun Pronoun-SubjectOrObject ProperCountNoun ProperMassNoun ProperNoun Punctuation-SP Quantifier-SP QuantifyingIndexical ReciprocalPronoun ReflexivePronoun SingularPronoun SubjectPronoun SubordinatingConjunction SuperlativeAdjective ThePrototypicalSpeechPart There-Existential Verb Verb-Contracted VerbParticle WHAdverb WHDeterminer WHPronoun WHPronoun-Object WHPronoun-Possessive WHPronoun-Subject WHWord

Predicate : speechPartPreds

GAF Arg:1

Mt : UniversalVocabularyMt

comment : If this predicate expresses the relation between parts of speech and the corresponding syntactic predicates. The first argument is a part of speech, i.e., a collection that is a specialization of <u>SpeechPart</u>. The second argument is a <u>SpeechPartPredicate</u> (q.v.). For instance, (<u>speechPartPreds</u> <u>CountNoun</u> <u>singular</u>) means that the predicate <u>singular</u> only applies to words that have <u>CountNoun</u> forms."

Constant : Ring-TheWord isa : EnglishWord

Mt : EnglishMt singular : "ring" infinitive : "ring"

(denotation Ring-TheWord Verb 1 EmittingSound) (denotation Ring-TheWord CountNoun 1 AudibleSound) (denotation Ring-TheWord CountNoun 0 RingShapedObject) (denotation Ring-TheWord CountNoun 2 Ring-Jewelry) Constant : Coke-TheWord isa : EnglishWord

Mt : EnglishMt singular : "coke" massNumber : "coke"

pnSingular : "Coke"
pnMassNumber : "Coke"

(denotation Coke-TheWord ProperCountNoun 0 (ServingFn CocaCola)) (denotation Coke-TheWord ProperMassNoun 0 CocaCola) (denotation Coke-TheWord MassNoun 0 Cocaine-Powder) (denotation Coke-TheWord MassNoun 2 ColaSoftDrink) (denotation Coke-TheWord SimpleNoun 0 (ServingFn ColaSoftDrink)) (denotation Coke-TheWord MassNoun 1 CokeFuel)

Mass nouns vs. Count nouns

- Only count nouns can be plural
 - one ring, two rings [count]
 - one sand, *two sands [mass]
 - one coke, two cokes [ambiguous]
- Only mass nouns take determiner some
 - *Can I have some ring? [count]
 - Can I have some sand? [mass]
 - Can I have some coke? [ambiguous]

Multi-word lexical entries

- The **denotation** predicate maps single words to concepts.
- What about phrases like "Clinton joke" and "joke about Clinton"?
 - multiWordString for head-final phrases

– compoundString for head-initial phrases

Predicate : multiWordString

arg1Isa : <a>(ListOfTypeFn ControlCharacterFreeString) arg2Isa : <a>LexicalWord arg3Isa : <a>SpeechPart arg4Isa : <a>Thing Mt: <u>AllEnglishLexicalMicrotheoryPSC</u>

(multiWordString)

(TheList "Clinton") Joke-TheWord CountNoun (JokeAboutFn BillClinton))

Predicate : compoundString

arg1Isa : <a>LexicalWord arg2Isa : <a>(ListOfTypeEn ControlCharacterFreeString) arg3Isa : <a>SpeechPart arg4Isa : <a>Thing

CompoundString or MultiWordString?

Example:

one joke about Clinton two joke**s** about Clinton *two joke about Clinton**s**

→ joke is the head of the phrase
→ use CompoundString instead of MultiWordString

What if I can't remember this?

 In many cases, you can just use the Dictionary Assistant.

😰 Specify the term and phrase for the lexical mapping

Complete	Term : AdultMaleHuman	Clear Term
Phrase :	guy	Clear Phrase
Reset	OK	

😰 Checking phrase ambiguity

In addition to 'man', phrase "guy" also refers to the following: male person Guy Steele Sir ovadia Sir ovadia Sergeant First Class Guy Hasson Guyana

Is that OK?

Yes No

Checking whether the phrase is a proper name

Is the phrase "guy" a name?

Yes No

😰 Checking usage of 'guy'

Which of the following sounds best?

many guys; a guy: countable noun like 'book'
 much guy; some guy: uncountable noun like 'sand'

OK

What about relational nouns like *mother* and *temperature*?

- Three options:
 - denotesArgInReIn
 - RelationParaphraseMt
 - nounSemTrans

denotesArgInReIn

(denotesArgInReIn Mother-TheWord CountNoun mother 2)

This says: One denotation of the word *mother* qua **CountNoun** is the collection of things M such that:

(relationExistsInstance mother Thing M)

i.e. the set of all mothers

RelationParaphraseMt

Mt : <u>RelationParaphraseMt</u>

(denotation Income-TheWord CountNoun 1 income)

nounSemTrans

(nounSemTrans)

(WordWithSuffixEn Assassinate-TheWord Ion AbstractNounProducing-TheSuffix) 132 GenitiveFrame (and

(isa :NOUN AssassinatingSomeone)

(victim :NOUN :POSSESSOR))) in GeneralEnglishMt

verbSemTrans

Mt : <u>AllEnglishValidatedLexicalMicrotheoryPSC</u>

 (verbSemTrans Scratch-TheWord 0 IntransitiveVerbFrame (and (isa:ACTION ScratchingOneself) (primaryObjectMoving:ACTION:SUBJECT)))
 (verbSemTrans Scratch-TheWord 0 TransitiveNPFrame (and (isa:ACTION ScratchingOneself) (objectOfStateChange:ACTION:OBJECT) (doneBy:ACTION:SUBJECT)))

verbSemTrans-Canonical

(verbSemTrans-Canonical Assassinate-TheWord 0 TransitiveNPFrame AssassinatingSomeone (TheList perpetrator victim)) in GeneralEnglishMt
Kinds of semantic predicates

- nameString-like:
 string ~ concept
- denotation-like:
 word ~ concept
- *semTrans (verbSemTrans, etc.):
 word ~ semantic template
- genTemplate, assertTemplate:

– sentence template ~ concept

genTemplate

Mt : EnglishParaphraseMt • (genTemplate extentCardinality (ConcatenatePhrasesFn (TermParaphraseFn-NP : ARG1) (BestHeadVerbForInitialSubjectFn Have-TheWord) (BestDetNbarFn (TermParaphraseFn : ARG2) (ConcatenatePhrasesFn (BestNLPhraseOfStringFn "known") (HeadWordOfPhraseFn (BestNLWordFormOfLexemeFn-Constrained CountNoun Member-TheWord))))))

That genTemplate in tree form

Deriving genTemplates

- Usually, genTemplate assertions are hand-written for each predicate
- But in principle, they could be derived by rule using facts about the predicate
- There are some examples of this

Assertion :

(genTemplate biologicalGrandfathers)

(BasicTransitiveSentenceEn

(BestDetNbarFn

(TermParaphraseEn-Possessive : ARG1)

(TermParaphraseEn-Constrained plural-Generic biologicalGrandfathers)) Include-TheWord

(TermParaphraseEn-NP : ARG2))) in EnglishParaphraseMt

Arguments Supporting Assertion :

Argument : Deduction #2835950

M(implies)

(isa ?PRED FamilyRelationSlot)

(genTemplate ?PRED

(BasicTransitiveSentenceEn

(BestDetNbarFn

(TermParaphraseEn-Possessive : ARG1)

(TermParaphraseEn-Constrained plural-Generic ?PRED)) Include-TheWord

(TermParaphraseEn-NP:ARG2)))) in EnglishParaphraseMt

:ISA (isa biologicalGrandfathers FamilyRelationSlot) in UniversalVocabularyMt

Kinds of semantic predicates

- nameString-like:
 string ~ concept
- denotation-like:
 word ~ concept
- *semTrans (verbSemTrans, etc.):
 word ~ semantic template
- genTemplate, assertTemplate:

– sentence template ~ concept

Overview

- NL microtheories
- Kinds of semantic predicates
- Inflectional and derivational morphology

Two string-concept routes

Two kinds of morphology

- Inflectional: relates multiple forms of the same word, e.g. (singular Dog-TheWord "dog") (plural Dog-TheWord "dogs")
- Derivational: relates one word to another, e.g. Wonder-TheWord ~ Wonderful-TheWord

Protoypical Inflectional Morphology

- tense (past, present, futu re, perfect)
- aspect (progressive, etc.)
- mood (conditional, imperative)
- person (first, second, third)
- number (singular, plural)
- gender (masculine, feminine, neuter)

Inflectional Morphology in Cyc

- Inflectional suffixes are not reified individuals in the KB; their orthographic content is indicated with regularSuffix assertions.
- Rules attach the string to the first form to produce the second form.

Inflectional Morphology in Cyc

M(implies
(<u>and</u>
(<u>infinitive</u> ?WU ?BSTRING)
(<u>evaluate</u> ?ENGLISHSUFFIXFN
(<u>EnglishSuffixationFn</u> ?BSTRING "ed")))
(<u>pastTense-Universal</u> ?WU ?ENGLISHSUFFIXFN))
M(implies)
(and
(<u>infinitive</u> ?WU ?BSTRING)
(<u>evaluate</u> ?ENGLISHSUFFIXFN
(<u>EnglishSuffixationFn</u> ?BSTRING "s")))
(<u>thirdPersonSg-Present</u> ?WU ?ENGLISHSUFFIXFN))
M(implies
(and
(<u>infinitive</u> ?WU ?BSTRING)
(<u>evaluate</u> ?ENGLISHSUFFIXFN
(<u>EnglishSuffixationFn</u> ?BSTRING "ing")))
(<u>presentParticiple</u> ?WU ?ENGLISHSUFFIXFN))

EnglishSuffixationFn

- Defined in code
- Not pure concatenation:

Mt : EnglishLexiconMt

- (regularSuffix gerund-Plural gerund "s")
- (regularSuffix gerund-Plural presentParticiple "s")
- (regularSuffix gerund-Singular presentParticiple "")
- (regularSuffix pluralVerb-Present infinitive "")
- (regularSuffix passiveParticiple perfect "")
- (regularSuffix firstPersonSg-Present infinitive "")
- (regularSuffix gerund presentParticiple ''')
- (regularSuffix perfect pastTense-Universal "")
- (regularSuffix secondPersonSg-Present infinitive "")
- (regularSuffix superlativeAdverb regularAdverb "est")
- (regularSuffix comparativeAdverb regularAdverb "er")
- (regularSuffix agentive-Sg infinitive "er")
- (regularSuffix pastTense-Universal infinitive "ed")
- (regularSuffix thirdPersonSg-Present infinitive "s")
- (regularSuffix pnPlural pnSingular "s")
- (regularSuffix agentive-Pl agentive-Sg "s")
- (regularSuffix plural singular "s")
- (regularSuffix presentParticiple infinitive "ing")

Prototypical Derivational Morphology

- Deverbal nouns like "embarrass<u>ment</u>", "assassinat<u>ion</u>", "grow<u>th</u>"
- Denominal verbs like "nullify", "scrutinize"
- Denominal adjectives like "wonder<u>ful</u>", "love<u>ly</u>", "boor<u>ish</u>"
- Deadjectival nouns like "happiness"

Derivational Morphology in Cyc

- Reified suffixes, associated with
 - a string
 - POS category of base word
 - POS category of derived word
- According to a Cyc rule, attach to the baseForm form of the base word.

Individual : Ion AbstractNounProducing-TheSuffix

GAF Arg:1

Mt : UniversalVocabularyMt isa : • LexicalSuffix • Individual

Mt : EnglishLexiconMt

isa : <u>LevelOneAffix</u> DeverbalAbstractNounProducingSuffix
<u>EnglishDerivationalSuffix</u>

Mt : UniversalVocabularyMt quotedIsa : NLMorphologyTerm

Mt : BookkeepingMt

<u>quotedIsa</u> :
<u>ResearchCycConstant-NLRelated-BreakLinkForOpenCycBuild</u>
<u>NLIKBConstant</u>
<u>CycSecureFORT</u>

Mt : EnglishLexiconMt

<u>comment</u>: "The suffix "ion" ("ation", "ition") means something like *the process or state of*. It converts <u>Verb</u>s to <u>Noun</u>s, generally to <u>MassNoun</u>s. Example: (<u>derivedUsingSuffix</u> #\$Exploration-TheWord <u>Ion_AbstractNounProducing-TheSuffix</u>)."

(nounSemTrans)

(WordWithSuffixEn Assassinate-TheWord Ion AbstractNounProducing-TheSuffix) 132 GenitiveFrame (and

(isa :NOUN AssassinatingSomeone)

(victim :NOUN :POSSESSOR))) in GeneralEnglishMt

Comparatives and superlatives: Inflectional or Derivational?

- The do not change the category of stem (much): "nice", "nicer" both adjectives
- Can attach to derived words, e.g. "luck+y+er"

But:

- Many adjectives lack comparative form
- Killer argument: semantics

Inflectional Analysis of Comparatives

tall', taller', tallest'

Tall-TheWord

"tall", "taller", "tallest"

Derivational Analysis of Comparatives

Application: Interpreting queries

- Query: "patients heavier than 150 lbs"
- Does this mean:
 - patients who are heavy? No!
 - patients who weigh 150 pounds? No!
 - patients whose weight is greater than 150 pounds? Yes.

A rule for comparative semantics

• (implies (and (adjectiveOfGenericValue ?SLOT veryLowToLowAmountOf ?WU) (termOfUnit ?WORDWITHSUFFIXFN (WordWithSuffixFn ?WU Er Comparative-TheSuffix))) (adjSemTrans ?WORDWITHSUFFIXFN 27 (PPCompFrameEn TransitivePPFrameType Than-TheWord) (and (lessThan ?X :OBLIQUE-OBJECT) (?SLOT :NOUN ?X)))) in GeneralEnglishMt

Assertion :

(adjSemTrans)

(WordWithSuffixFn Little-TheWord Er Comparative-TheSuffix) 27 (PPCompFrameFn TransitivePPFrameType Than-TheWord)

(and

(lessThan ?X :OBLIQUE-OBJECT)

(sizeParameterOfObject :NOUN ?X))) in GeneralEnglishMt

Arguments Supporting Assertion :

Argument : Deduction #3949626

(implies)

(and

(adjectiveOfGenericValue ?SLOT veryLowToLowAmountOf ?WU)

(termOfUnit ?WORDWITHSUFFIXFN

(WordWithSuffixEn ?WU Er Comparative-TheSuffix)))

(adjSemTrans ?WORDWITHSUFFIXFN 27

(PPCompFrameFn TransitivePPFrameType Than-TheWord)

(and

(lessThan ?X :OBLIQUE-OBJECT)

(?SLOT :NOUN ?X)))) in GeneralEnglishMt

(adjectiveOfGenericValue sizeParameterOfObject veryLowToLowAmountOf Little-TheWord) in GeneralEnglishMt

(termOfUnit)

(WordWithSuffixFn Little-TheWord Er Comparative-TheSuffix)

(WordWithSuffixEn Little-TheWord Er Comparative-TheSuffix)) in BaseKB

To do:

- Improve semantic coverage for comparative adjectives
- Derive semantics for superlatives
- Develop analogous analysis for comparative and superlative adverbs (e.g. she ran faster / the fastest)

Nouns with arguments

- New York Times: "...the assassination of a senior Hamas official..."
 - There was an event of assassination
 - Hamas official: the **victim** or **perpetrator**?
- General problem: linking noun phrases in PP modifiers of nouns to the appropriate role

Do nouns have argument structure like verbs?

- Subject of theoretical importance since Chomsky (1970), *Remarks on Nominalization*
- Grimshaw (1990) argued that some nouns do (process nouns) and others don't (non-process nouns)

Nouns ~ Verbs

the enemy destroyed the city

the enemy's destruction of the city the destruction of the city by the enemy

CP complements

The physicists claimed that the earth is round

the physicists' claim that the earth is round

Infinitival complements

They attempted to leave

their attempt to leave

Locative PP complement

The train arrived at the station

the train's arrival at the station

Nouns: optional arguments?

The doctor examined *(the patients)

The doctor's examination (of the patients) was successful

Result vs. Process Readings

John's examination was long result reading, John can be exam taker

John's examination of the patients took a long time

process reading, John = agent

examination vs. exam

The examination/exam was long result reading

The examination/*exam of the patients took a long time.

process reading

-ing: unambiguously process

They felled *(the trees) the felling *(of the trees)

They destroyed *(the city) the destroying *(of the city)

frequent: disambiguates

the expression (on her face) is good the expression of one's feelings is good

*the frequent expression is good the frequent expression of one's feelings is good
constant: also disambiguates

the assignment (on plurals) is annoying the assignment of unsolvable problems is annoying

*the constant assignment is annoying the constant assignment of unsolvable problems is annoying

role of possessors

The instructor's examination took a long time.

result reading, instructor = test-maker

The instructor's examination of the papers took a long time.

process reading, instructor = agent

agent-by makes of obligatory

the expression *(of agressive feelings) by patients

the examination *(of the papers) by the instructor

the development *(of inexpensive housing) by the city

So agent-by implies process reading

author-by: of optional

An examination by a competent instructor will reveal...

The assignment by Fred was no good.

Pine Tree Hollow -- a development by Holmes Associates

So: no *of* => *by* is author, not agent

Nouns vs. Verbs

- Like verbs, certain nouns have obligatory arguments. Namely, process nouns ("complex event nominals" according to Grimshaw 1990)
- The of phrase is obligatory on process readings (Grimshaw 1990)

What nouns have process readings?

- Any noun for which there is a corresponding verb?
 - No: to mother a child, but: the mother of a child cannot refer to an event of mothering a child. Zero-derived nouns are out.
- Only morphologically complex nouns, like examination, assignment

Counterexample?

"Elders in Marjah, the former Taliban stronghold seized this month in a NATO offensive, gave President Hamid Karzai a piece of their minds this week during his first visit to the town. Sometimes shouting, tribal leaders complained of excessive use of force by U.S. troops"

The Week

A rule for deriving lexical entries for process nominals with *of* PPs

(implies (and (isa ?SUFFIX DeverbalAbstractNounProducingSuffix) (derivedUsingSuffix ?NOUN ?SUFFIX) (morphologicallyDerivedFrom ?NOUN ?WORD) (verbSemTrans-Canonical ?WORD ??NUM TransitiveNPFrame ?COL (TheList ??ROLE1 ?ROLE2))) (nounSemTrans ?NOUN 132 GenitiveFrame (and (isa :NOUN ?COL) (?ROLE2 :NOUN :POSSESSOR)))) in GeneralLexiconMt

Assertion :

(nounSemTrans)

(WordWithSuffixEn Assassinate-TheWord Ion AbstractNounProducing-TheSuffix) 132 GenitiveFrame

(<u>and</u>

(isa :NOUN AssassinatingSomeone)

(victim :NOUN :POSSESSOR))) in GeneralEnglishMt

Arguments Supporting Assertion :

Argument : Deduction #3767582

(implies)

(<u>and</u>

(isa ?SUFFIX DeverbalAbstractNounProducingSuffix)

(derivedUsingSuffix ?NOUN ?SUFFIX)

(morphologicallyDerivedFrom ?NOUN ?WORD)

(verbSemTrans-Canonical ?WORD ??NUM TransitiveNPFrame ?COL

(TheList ??ROLE1 ?ROLE2)))

(nounSemTrans ?NOUN 132 GenitiveFrame

(and

(isa:NOUN ?COL)

(?ROLE2:NOUN:POSSESSOR)))) in GeneralLexiconMt

(verbSemTrans-Canonical Assassinate-TheWord 0 TransitiveNPFrame AssassinatingSomeone

(TheList perpetrator victim)) in GeneralEnglishMt

(derivedUsingSuffix)

(WordWithSuffixEn Assassinate-TheWord Ion AbstractNounProducing-TheSuffix) Ion AbstractNounProducing-TheSuffix) in EnglishLexiconMt

(morphologicallyDerivedFrom)

(WordWithSuffixEn Assassinate-TheWord Ion AbstractNounProducing-TheSuffix) Assassinate-TheWord) in GeneralLexiconMt :ISA (isa Ion AbstractNounProducing-TheSuffix DeverbalAbstractNounProducingSuffix) in EnglishLexiconMt

To do:

- Write rules for non-canonical verbSemTrans
- Write rules for *by* phrases, possessors, and combinations
- Capture relationship among of phrases, by phrases, and possessors
- Represent non-process readings

Conclusions

- Cyc lexicon uses cool OE stuff:
 Microtheories, forward rules, evaluatable functions and predicates, exceptions
- Cyc lexicon is generative
- Lexicography can get interesting
- Plenty to do, even for English