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Data-dependent paradigm

@ A dataset is sampled from a space with an unknown
geometry

@ Hence the “distances” between particular points is
dependent on the sample

@ Implication: We need to learn the “geometry”
(Assumptions Needed!)
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Observation
Knowing “3” suggests the distance from “1” and “2” be reduced
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Data-dependent Geometry

Topics

@ Graph-based semi-supervised learning

e Laplacian-based methods (Data dependent kernels)

e Tree approximations (online mistake bounds)

e Link classification (Active learning)

e Fast algorithms (Bayesian Marginalisation)

@ Exploiting the structure of an unknown data-generating
distribution

o Localized Pac-Bayes analysis



Resources Allocated

Resources

Activity duration | cost
Guy Lever RA (UCL) 5 months | €23K
Fabio Vitale RA (Insubria) | 9 months | €19K
Travel and subsistence — €3K
Total: — €45K




Outputs

@ N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A
correlation clustering approach to link classification in signed
networks., Submitted, 2012.

@ N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the
tree through the lines: the shazoo algorithm., NIPS, 2012.

© M. Herbster. A triangle inequality for p-resistance., NIPS
Workshop: Networks Across Disciplines: Theory and
Applications, 2010.

© M. Herbster, S. Pasteris, and F. Vitale. Efficient prediction for
tree markov random fields in a streaming model., NIPS
Workshop on Discrete Optimization in Machine Learning, 2011.

@ G. Lever, T. Diethe, and J. Shawe-Taylor. Data dependent
kernels in nearly-linear time., AISTATS, 2012.

@ G. Lever, F. Laviolette, and J. Shawe-Taylor. Tighter pac-bayes
bounds through distribution-dependent priors., Theoretical
Computer Science (To appear), 2012.



Main Insubria activities

¢ Vertex classification on weighted graphs

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the tree through the lines: the
shazoo algorithm. In Proc. of 25th NIPS, 2012.

e Link classification on unweighted graphs

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A correlation clustering approach to link
classification in signed networks. Submitted, 2012.

e Main issues:
— Construction of meaningful and natural complexity measures
— Accuracy guarantees / optimality
— Scalability
— Practical utility

e Performance measure (analysis): number of prediction mistakes



Vertex Classification
The Shazoo algorithm

e Learning on graphs/trees domains: hyperlinked webpages, social networks,
co-author networks, biological networks, ...

e Our learning problem: Vertex classification of weighted, connected and
undirected trees (and graphs) based only on graph topology

e We focus on binary labeling

e Bias: strongly connected nodes —> same label
Weight cut-edges small

The Shazoo algorithm [Cesa-Bianchi et al. NIPS 2012]: input = weighted trees T
(if the input is a graph G we can run Shazoo on a spanning tree T of G)

o Shazoo (1) partitions T into components (satifying some properties), (2) uses
mincut for estimating the labels of the component border vertices, (3) uses a NN

method for predicting the required label

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the tree through the lines: the
shazoo algorithm. In Proc. of 25th NIPS, 2012.



Shazoo Algortihm: Analysis, implementation
and computational complexity

Accuracy: #mistakes of Shazoo is optimal (up to log factors)

Implementation: simple and fast recursive method (based on sum-product
algorithm) for using the mincut strategy

Time complexity:

- On line protocol: Worst case time per prediction: O (#vertices)
(rarely encountered in practice)

- Batch protocol (vertices are split into training and test sets) :
Worst case time for predicting all labels of the test set: O (#vertices)

Space complexity: Linear in #vertices

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the tree through the lines: the
shazoo algorithm. In Proc. of 25th NIPS, 2012.



Shazoo algorithm
Experiments

Real-world weighted graphs: web spam detection, character recognition, text
categorization and bioinformatics

Competitors: LABPROP (label propagation algorithm), OMV (label majority vote
of adjacent nodes) and WTA (Weighted Tree Algorithm)

We used spanning trees generated in different ways for running Shazoo (and
WTA)

Experiment protocol: batch (training set size = 5%, 10% and 25%)

Main results:
— Shazoo outperforms WTA and OMV on all datasets
(unlike WTA it explicity exploits the tree structure)

— Aggregating prediction of committees of random spanning trees via majority vote,
Shazoo outperforms LABPROP when the training set size is small

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the tree through the lines: the
shazoo algorithm. In Proc. of 25th NIPS, 2012.



Link classification

Protocol: Active Learning (focus) Active learning protocol
Negative edges in real world networks: — Learner selects a set TrSet of
Disapproval or distrust in social networks, edges (training set)
negative endorsements on the Web, — All labels of the edges of TrSet
inhibitory interactions in biological are revealed
_net_w_orksl, sfentlment between two — Learner predicts the labels of
individuals for recommender systems all remaining edges

Edge label +1 > similarity

................ Edge label -1 - dissimilarity

— — — Hidden label

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A correlation clustering approach
to link classification in signed networks. Submitted, 2012.



Active link classification
Main results

For this problem we studied a meaningful and natural complexity measure
related to a notion of cutsize induced by Correlation Clustering
Accuracy guarantees: We devised an algorithm optimal up to

a 0> |71 ) factor on any labeled graph G(V,E), while the test set size
is not smaller than - o times the training test size

Scalability: Our algorithm requires an amortized time per prediction equal

1V I
O —logIVl)
o {7

Research directions:
e Use randomization against adversarial label assignment

e Test our algorithm on real-world graphs drawn from different domains:
social networks (Epinions, Slashdot), movie rating datasets (Movielens)
and other web datasets (political election datasets, ...)

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A correlation clustering approach
to link classification in signed networks. Submitted, 2012.



UCL Activities (Part 1)

@ Exploiting the structure of a graph (resistance metric)
@ Fast online algorithms for labeling a graph

@ A triangle inequality for p-resistance.
e p-resistance generalises the effective resistance of a
network
e Laplacian and Mincut methods popular, p-resistance for
SSL generalises both
e Fundamental inequality for p-resistance
e Geometric insight given for k-center clustering

@ Efficient prediction for tree markov random fields in a
streaming model
e Exponential speedup for online tree MRF vertex
marginalization
e Computational complexity — characterised by a particular
hierarchal covering of a tree
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A triangle inequality for p-resistance (1)

@ Identify a graph with a network of resistors

@ Definition: The (effective) p-resistance from aand b is
—1
A wi—yl?
rp(a, b) = {LQ}RFL{ Z T us=1,u,=0
(i))EE(G)

© p-Resistance trades off geodesic distance and connectivity
Q Resistors in parallel Resistors in series

n -1 p—1
Par(a b) (Z 71) ser a b (ZW )
i=1




A triangle inequality for p-resistance (2)

-~

@ Electric Network (p = 2): r(a,c) < r(a,b) + r2(b, c)
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A triangle inequality for p-resistance (2)

-~

@ Electric Network (p =2): r(a,c) < r(a,b)+ r(b,c)
@ Pipe Network (p = 1): ri(a, c) < max(ri(a,b), ri(b,c))
X

© Generic pe(1,00): rp(a, c) < (rp(a, b)p*1 + rp(b, c)fH)p



A triangle inequality for p-resistance (3)

Application: k-center clustering
Objective:

min maxmind(v, v/).
Vi VR eV veV ieN

Farthest first algorithm

Input: Aset V=vq,...,vp,ak €N, and a metric d(V, V)
Initialization VT =wv

\L |
% A

for t = ,k do

v = argmaxvev Min;ey,_, d(Vv, ;)
end for
return {\71 gooog Vk}

| A

Theorem

Given a graph G the farthest first algorithm gives a 2°~'-opt
k-center clustering with respect to the p-resistance for p > 1.




Efficient prediction for tree markov random fields (1)

Given a tree-structured MRF attime t =1,2, ...

Actions:
i) predict a label at a vertex on the tree
ii) update by associating a label with a vertex
iii) delete the label at a vertex.

Problem
Problem: Online belief propagation is slow — linear on a tree.

000000

Solution: We construct a (decomposition) tree on the original
Result: D-propagation is fast on a tree.

A,




Efficient prediction for tree markov random fields (2)

Decompose the tree...




Efficient prediction for tree markov random fields (3)

D-propagation
We construct tree D from T of height x s.t.
log(height(T)) < x < min(log(|T|), height(T)).
For update and prediction we then “D-propagate” on D.
Online belief propagation | Online D-propagation
Prediction o(1) O(x)

Update o(T) O(x)
Initialisation o(T| O(|TI®) now O(T)




UCL Activities (Part Il)

@ Learning with data-dependent hypothesis classes

@ Theoretical and practical advances
@ 2 papers:
@ Data dependent kernels in nearly-linear time

- kernels on general (continuous) spaces capture data-defined
structure

- current methods scale poorly

- exploit huge amounts of data

- practical, fast

@ Tighter PAC-Bayes bounds through distribution dependent
priors

- bounds for exponential weights and SVMs

- Localized PAC-Bayes analysis

- encode assumptions about interaction of classifiers with data

- tight bounds, new distribution-dependent complexity
measure



Data dependent kernels in nearly-linear time (1)

@ kernels on general (continuous) domains capture structure
in data
— manifold structure, cluster structure etc.

@ we want:
— Fast (need to exploit lots of data to be robust)
— automatic (no tuning or domain knowledge)
@ Problem: Given space X’ and subsample V C X, |V| =n
and “intrinsic regularizer”:

reg(h) = h"Qh (1)

where h: X — R and h; = h(v;), define kernel
K: X x X — R such that:
— functions h € Hy smooth w.r.t. (1)

— K extends kernel Q" from V to X



Data dependent kernels in nearly-linear time (2)

@ One solution (Sindhwani et. al. 2005): pick basic
K : X x X — R then define

(h,g)g == B(h,g)k +(1 —B)h"Qg, h,gc H,

@ kernel K has closed form, but cubic complexity

@ solution: disconnect V from landmark points £ C V at
which functions in H are measured

@ Proposed RKHS has inner probuct:

(h.9)g = B(h,g)k + (1= B)(h)"Qg", h g e,

where h| is restriction of h € RY to L,
h* € argming, v {h"Qh : h(f) = h((),¢ € L}.

@ Theorem: K (x, x") nearly-linear complexity in n

(3)



Data dependent kernels in nearly-linear time (3)

@ Benefit: robustness of using a huge graph (avoid short
circuiting), but efficiently computable

@ state of the art performance on large data-sets in SSL
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@ also follow ups:
— efficient CV of many parameters
— journal version in prep.
— applying to RL to learn kernels on state space



Tighter PAC-Bayes bounds through distribution

dependent priors (1)

@ Bounds for stochastic classifiers Gg drawn from
distribution Q on H

@ trick is to define PAC-Bayes prior in terms of unknown
distribution

@ No relative entropy term in bounds
@ Exponential weights: density on # is

T sk
q(h) = e risks (h) (4)
@ bound: with probability at least 1 — 9,

1( > oym 2 2ym
, ol

Ki(risks(Gq), risk(Gq)) < p= In =Y 4

m 5 '2m ' 6

Ki(g,p) = qInd + (1 — q)In =2
@ no complexity term — only parameter ~

+In——



Tighter PAC-Bayes bounds through distribution

dependent priors (2)

@ RKHS regularization algorithms:

h = argmin{risk&(h) + n|| Al 1%} (5)
hety

Hy is RKHS with norm || - ||x. Gg is GP with mean and
covariance

E[G(x)] = hs(x), COV(G(X),G(X'))=lK(X,X’) (6)

@ bound:

— . 1 /2y 8 4v/m
Ps (kl(rlskg(G),rlsk(G)) < - (lem In 5 +1In 5)) >1-6

@ KL term removed — only parameters n and ~
— interpreted as complexity terms



Future directions

@ We would like to extend the completion to September 2012

@ Until September 2012
@ Extend results on fast online prediction for tree MRFs
@ Experiments with Bristol data set
@ Post September 2012 : Extend p-resistance research
e UCL and Tuebingen : 2 papers each p-resistance an open
research area
o Visit between UCL and Tuebingen (possibly also Insubria)
@ Some directions:
@ Computational issues (efficiency + representer theorem)
@ Loss bounds over the full spectrum of p € oo
© Reinforcement learning application



