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Data Dependent Geometry

What is a “data-dependent geometry” ?

Standard paradigm
A dataset is sampled from a space with a given geometry
the “distances” between particular points is independent
of the sample

Data-dependent paradigm
A dataset is sampled from a space with an unknown
geometry
Hence the “distances” between particular points is
dependent on the sample
Implication: We need to learn the “geometry”
(Assumptions Needed!)
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Example

Consider the following dataset of a new stories

News stories (Source, Headline)
1 (Financial Times, Research and Development in Fusion

increased by 60% Last Quarter)
2 (St. Petersburg Gazeteer, Major layoffs expected in

tourism sector)
3 (The Times, Super-Tanker founders on Florida coast.

Largest spill of the millennium.)

Observation
Knowing “3” suggests the distance from “1” and “2” be reduced
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Data-dependent Geometry

Topics

Graph-based semi-supervised learning

Laplacian-based methods (Data dependent kernels)
Tree approximations (online mistake bounds)
Link classification (Active learning)
Fast algorithms (Bayesian Marginalisation)

Exploiting the structure of an unknown data-generating
distribution

Localized Pac-Bayes analysis



Resources Allocated

Resources

Activity duration cost
Guy Lever RA (UCL) 5 months e23K
Fabio Vitale RA (Insubria) 9 months e19K
Travel and subsistence — e3K
Total: — e45K
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1 N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A
correlation clustering approach to link classification in signed
networks., Submitted, 2012.

2 N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the
tree through the lines: the shazoo algorithm., NIPS, 2012.

3 M. Herbster. A triangle inequality for p-resistance., NIPS
Workshop: Networks Across Disciplines: Theory and
Applications, 2010.

4 M. Herbster, S. Pasteris, and F. Vitale. Efficient prediction for
tree markov random fields in a streaming model., NIPS
Workshop on Discrete Optimization in Machine Learning, 2011.

5 G. Lever, T. Diethe, and J. Shawe-Taylor. Data dependent
kernels in nearly-linear time., AISTATS, 2012.

6 G. Lever, F. Laviolette, and J. Shawe-Taylor. Tighter pac-bayes
bounds through distribution-dependent priors., Theoretical
Computer Science (To appear), 2012.



•  Vertex classification on weighted graphs 

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the tree through the lines: the 
shazoo algorithm. In Proc. of 25th NIPS, 2012. 

•  Link classification on unweighted graphs 
N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A correlation clustering approach to link 

classification in signed networks. Submitted, 2012. 
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Main Insubria activities 

•  Main issues:  
–  Construction of meaningful and natural complexity measures 
–  Accuracy guarantees / optimality 
–  Scalability 
–  Practical utility 

•  Performance measure (analysis): number of prediction mistakes 



•  Learning on graphs/trees domains: hyperlinked webpages, social networks, 
co-author networks, biological networks, … 

•  Our learning problem: Vertex classification of weighted, connected and 
undirected trees (and graphs) based only on graph topology  

•  We focus on binary labeling 

•  Bias: strongly connected nodes           same label  
 Weight cut-edges small 
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+ + 

+ 
+ + 

Vertex Classification 
The Shazoo algorithm 

The Shazoo algorithm [Cesa-Bianchi et al. NIPS 2012]: input = weighted trees T 
(if the input is a graph G we can run Shazoo on a spanning tree T of G) 

•  Shazoo (1) partitions T into components (satifying some properties), (2) uses 
mincut for estimating the labels of the component border vertices, (3) uses a NN 
method for predicting the required label 

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the tree through the lines: the 
shazoo algorithm. In Proc. of 25th NIPS, 2012. 



Shazoo Algortihm: Analysis, implementation 

and computational complexity  
Accuracy: #mistakes of Shazoo is optimal (up to log factors) 

Implementation: simple and fast recursive method (based on sum-product 
algorithm) for using the mincut strategy 

Time complexity:  

 - On line protocol: Worst case time per prediction: O (#vertices)  
         (rarely encountered in practice) 

 - Batch protocol (vertices are split into training and test sets) :  
         Worst case time for predicting all labels of  the test set: O (#vertices) 

Space complexity: Linear in #vertices  

- 
- 

- 
- + 

+ 

+ + 

+ 
+ + 

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the tree through the lines: the 
shazoo algorithm. In Proc. of 25th NIPS, 2012. 



•  Real-world weighted graphs: web spam detection, character recognition, text 
categorization and bioinformatics 

•  Competitors: LABPROP (label propagation algorithm), OMV (label majority vote 
of adjacent nodes) and WTA (Weighted Tree Algorithm) 

•  We used spanning trees generated in different ways for running Shazoo (and 
WTA)  

•  Experiment protocol: batch (training set size = 5%, 10% and 25%) 

•  Main results:  
–  Shazoo outperforms WTA and OMV on all datasets  

  (unlike WTA it explicity exploits the tree structure) 
–  Aggregating prediction of committees of random spanning trees via majority vote, 

Shazoo outperforms LABPROP when the training set size is small 

Shazoo algorithm 
Experiments - 
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N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the tree through the lines: the 
shazoo algorithm. In Proc. of 25th NIPS, 2012. 



Link classification 

Edge label +1 ! similarity 

Edge label -1 ! dissimilarity 

Hidden label  

Protocol: Active Learning (focus) 
Negative edges in real world networks: 

Disapproval or distrust in social networks, 
negative endorsements on the Web, 
inhibitory interactions in biological 
networks, sentiment between two 
individuals for recommender systems 

 Active learning protocol 
–  Learner selects a set TrSet of 

edges (training set) 
–  All labels of the edges of TrSet 

are revealed 
–  Learner predicts the labels of 

all remaining edges 

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A correlation clustering approach 
to link classification in signed networks. Submitted, 2012. 



–  For this problem we studied a meaningful and natural complexity measure 
    related to a notion of cutsize induced by Correlation Clustering 
–  Accuracy guarantees: We devised an algorithm optimal up to  

 a                       factor on any labeled graph G(V,E), while the test set size 
is not smaller than            times  the training test size 

–  Scalability: Our algorithm requires an amortized time per prediction equal  

    to                              

–  Research directions:  
•  Use randomization against adversarial label assignment 
•   Test our algorithm on real-world graphs drawn from different domains: 

social networks (Epinions, Slashdot), movie rating datasets (Movielens) 
and other web datasets (political election datasets, …) 

Active link classification 
Main results 
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N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A correlation clustering approach 
to link classification in signed networks. Submitted, 2012. 



UCL Activities (Part I)

Exploiting the structure of a graph (resistance metric)
Fast online algorithms for labeling a graph

1 A triangle inequality for p-resistance.
p-resistance generalises the effective resistance of a
network
Laplacian and Mincut methods popular, p-resistance for
SSL generalises both
Fundamental inequality for p-resistance
Geometric insight given for k -center clustering

2 Efficient prediction for tree markov random fields in a
streaming model

Exponential speedup for online tree MRF vertex
marginalization
Computational complexity – characterised by a particular
hierarchal covering of a tree



A triangle inequality for p-resistance (1)
1 Identify a graph with a network of resistors

a

b

2 Definition: The (effective) p-resistance from a and b is

rp(a,b) =

min
u∈Rn

 ∑
(i,j)∈E(G)

|ui − uj |p

πij
: ua = 1,ub = 0


−1

3 p-Resistance trades off geodesic distance and connectivity
4 Resistors in parallel Resistors in series

rpar
p (a,b) =

(
n∑

i=1

1
πi

)−1
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p (a,b) =

(
n∑

i=1

π
1

p−1
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)p−1
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A triangle inequality for p-resistance (2)

a

b

c

1 Electric Network (p = 2): r2(a, c) ≤ r2(a,b) + r2(b, c)

2 Pipe Network (p = 1): r1(a, c) ≤ max(r1(a,b), r1(b, c))

3 Generic p∈(1,∞): rp(a, c) ≤
(

rp(a,b)
1

p−1 + rp(b, c)
1

p−1

)p−1
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A triangle inequality for p-resistance (3)

Application: k -center clustering

Objective:
min

v∗1 ,...,v
∗
k ∈V

max
v∈V

min
i∈Nk

d(v , v∗i ) .

Farthest first algorithm

Input: A set V = v1, . . . , vn, a k ∈ N, and a metric d(V ,V )→ R
Initialization: ṽ1 = v1
for t = 2, . . . , k do

ṽt = argmaxv∈V mini∈Nt−1 d(v , ṽi)

end for
return {ṽ1, . . . , ṽk}

Theorem

Given a graph G the farthest first algorithm gives a 2p−1-opt
k -center clustering with respect to the p-resistance for p > 1.



Efficient prediction for tree markov random fields (1)

Model
Given a tree-structured MRF at time t = 1,2, . . .

Actions:
i) predict a label at a vertex on the tree
ii) update by associating a label with a vertex
iii) delete the label at a vertex.

Problem
Problem: Online belief propagation is slow — linear on a tree.

Solution: We construct a (decomposition) tree on the original
Result: D-propagation is fast on a tree.



Efficient prediction for tree markov random fields (2)

Decompose the tree...



Efficient prediction for tree markov random fields (3)

D-propagation

We construct tree D from T of height χ s.t.

log(height(T )) ≤ χ ≤ min(log(|T |),height(T )).

For update and prediction we then “D-propagate” on D.

Online belief propagation Online D-propagation
Prediction O(1) O(χ)

Update O(|T |) O(χ)

Initialisation O(|T |) O(|T |3) now O(T )



UCL Activities (Part II)

Learning with data-dependent hypothesis classes
Theoretical and practical advances
2 papers:

1 Data dependent kernels in nearly-linear time

- kernels on general (continuous) spaces capture data-defined
structure

- current methods scale poorly
- exploit huge amounts of data
- practical, fast

2 Tighter PAC-Bayes bounds through distribution dependent
priors

- bounds for exponential weights and SVMs
- Localized PAC-Bayes analysis
- encode assumptions about interaction of classifiers with data
- tight bounds, new distribution-dependent complexity

measure



Data dependent kernels in nearly-linear time (1)

kernels on general (continuous) domains capture structure
in data

– manifold structure, cluster structure etc.
we want:

– Fast (need to exploit lots of data to be robust)
– automatic (no tuning or domain knowledge)

Problem: Given space X and subsample V ⊂ X , |V| = n
and “intrinsic regularizer”:

reg(h) = h>Qh (1)

where h : X → R and hi = h(vi), define kernel
K̃ : X × X → R such that:

– functions h ∈ HK̃ smooth w.r.t. (1)
– K̃ extends kernel Q+ from V to X



Data dependent kernels in nearly-linear time (2)

One solution (Sindhwani et. al. 2005): pick basic
K : X × X → R then define

〈h,g〉K̃ := β〈h,g〉K + (1− β)h>Qg, h,g ∈ HK , (2)

kernel K̃ has closed form, but cubic complexity
solution: disconnect V from landmark points L ⊂ V at
which functions in HK are measured
Proposed RKHS has inner probuct:

〈h,g〉K̆ := β〈h,g〉K + (1− β)(h∗)>Qg∗, h,g ∈ HK , (3)

where h|L is restriction of h ∈ RV to L,
h∗ ∈ argminh∈RV{h

>Qh : h(`) = h(`), ` ∈ L}.
Theorem: K̆ (x , x ′) nearly-linear complexity in n



Data dependent kernels in nearly-linear time (3)

Benefit: robustness of using a huge graph (avoid short
circuiting), but efficiently computable
state of the art performance on large data-sets in SSL
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also follow ups:
– efficient CV of many parameters
– journal version in prep.
– applying to RL to learn kernels on state space



Tighter PAC-Bayes bounds through distribution
dependent priors (1)

Bounds for stochastic classifiers GQ drawn from
distribution Q on H
trick is to define PAC-Bayes prior in terms of unknown
distribution
No relative entropy term in bounds
Exponential weights: density on H is

q(h) =
1
Z

e−γ r̂iskS(h) (4)

bound: with probability at least 1− δ,

kl(r̂iskS(GQ), risk(GQ)) ≤ 1
m

γ
√

2
m

ln
2
√

m
δ

+
γ2

2m
+ ln

2
√

m
δ


kl(q,p) := q ln q

p + (1− q) ln 1−q
1−p

no complexity term – only parameter γ



Tighter PAC-Bayes bounds through distribution
dependent priors (2)

RKHS regularization algorithms:

h∗S := argmin
h∈HK

{r̂isk`S(h) + η||h||2K} (5)

HK is RKHS with norm || · ||K . GQ is GP with mean and
covariance

E[G(x)] = h∗S(x), Cov(G(x),G(x ′)) =
1
γ

K (x , x ′) (6)

bound:

PS
(

kl(r̂iskS(G), risk(G)) ≤ 1
m

(
2γ
η2m

ln
8
δ

+ ln
4
√

m
δ

))
≥ 1−δ

KL term removed – only parameters η and γ
– interpreted as complexity terms



Future directions

We would like to extend the completion to September 2012
Until September 2012

1 Extend results on fast online prediction for tree MRFs
2 Experiments with Bristol data set

Post September 2012 : Extend p-resistance research
UCL and Tuebingen : 2 papers each p-resistance an open
research area
Visit between UCL and Tuebingen (possibly also Insubria)
Some directions:

1 Computational issues (efficiency + representer theorem)
2 Loss bounds over the full spectrum of p ∈ ∞
3 Reinforcement learning application


