# Data-Dependent Geometries and Structures : Analyses and Algorithms for Machine Learning

# Mark Herbster, Guy Lever, John Shawe-Taylor University College London

> Claudio Gentile, Fabio Vitale Universita' dell'Insubria, Varese claudio.gentile@uninsubria.it,

fabiovdk@yahoo.com

Nello Cristianini University of Bristol

nello.cristianini@gmail.com

29th March 2012



# Data Dependent Geometry

#### What is a "data-dependent geometry"?

#### Standard paradigm

- A dataset is sampled from a space with a given geometry
- the "distances" between particular points is independent of the sample

#### Data-dependent paradigm

- A dataset is sampled from a space with an unknown geometry
- Hence the "distances" between particular points is dependent on the sample
- Implication: We need to learn the "geometry" (Assumptions Needed!)

# Data Dependent Geometry

#### What is a "data-dependent geometry"?

#### Standard paradigm

- A dataset is sampled from a space with a given geometry
- the "distances" between particular points is independent of the sample

#### Data-dependent paradigm

- A dataset is sampled from a space with an unknown geometry
- Hence the "distances" between particular points is dependent on the sample
- Implication: We need to learn the "geometry" (Assumptions Needed!)

#### Consider the following dataset of a new stories

#### News stories (Source, Headline)

- (Financial Times, Research and Development in Fusion increased by 60% Last Quarter)
- (St. Petersburg Gazeteer, Major layoffs expected in tourism sector)
- (*The Times*, Super-Tanker founders on Florida coast. Largest spill of the millennium.)

#### Observation

#### Consider the following dataset of a new stories

#### News stories (Source, Headline)

- (Financial Times, Research and Development in Fusion increased by 60% Last Quarter)
- (St. Petersburg Gazeteer, Major layoffs expected in tourism sector)
- (The Times, Super-Tanker founders on Florida coast. Largest spill of the millennium.)

#### Observation

#### Consider the following dataset of a new stories

#### News stories (Source, Headline)

- (Financial Times, Research and Development in Fusion increased by 60% Last Quarter)
- (St. Petersburg Gazeteer, Major layoffs expected in tourism sector)
- (The Times, Super-Tanker founders on Florida coast. Largest spill of the millennium.)

#### Observation

#### Consider the following dataset of a new stories

#### News stories (Source, Headline)

- (Financial Times, Research and Development in Fusion increased by 60% Last Quarter)
- (St. Petersburg Gazeteer, Major layoffs expected in tourism sector)
- (The Times, Super-Tanker founders on Florida coast. Largest spill of the millennium.)

#### Observation

# Illustration



## Illustration



# Data-dependent Geometry

#### **Topics**

- Graph-based semi-supervised learning
  - Laplacian-based methods (Data dependent kernels)
  - Tree approximations (online mistake bounds)
  - Link classification (Active learning)
  - Fast algorithms (Bayesian Marginalisation)
- Exploiting the structure of an unknown data-generating distribution
  - Localized Pac-Bayes analysis

### Resources Allocated

#### Resources

| Activity                          | duration    | cost |
|-----------------------------------|-------------|------|
| Guy Lever RA (UCL)                | 5 months    | €23K |
| Fabio Vitale <b>RA</b> (Insubria) | 9 months    | €19K |
| Travel and subsistence            | _           | €3K  |
| Total:                            | <del></del> | €45K |

### Outputs

- N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A correlation clustering approach to link classification in signed networks., Submitted, 2012.
- N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the tree through the lines: the shazoo algorithm., *NIPS*, 2012.
- M. Herbster. A triangle inequality for p-resistance., NIPS Workshop: Networks Across Disciplines: Theory and Applications, 2010.
- M. Herbster, S. Pasteris, and F. Vitale. Efficient prediction for tree markov random fields in a streaming model., NIPS Workshop on Discrete Optimization in Machine Learning, 2011.
- G. Lever, T. Diethe, and J. Shawe-Taylor. Data dependent kernels in nearly-linear time., AISTATS, 2012.
- G. Lever, F. Laviolette, and J. Shawe-Taylor. Tighter pac-bayes bounds through distribution-dependent priors., *Theoretical Computer Science (To appear)*, 2012.





# **Main Insubria activities**

- Vertex classification on weighted graphs
- N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the tree through the lines: the shazoo algorithm. In Proc. of 25th NIPS, 2012.
- Link classification on unweighted graphs
- N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A correlation clustering approach to link classification in signed networks. Submitted, 2012.

- Main issues:
  - Construction of meaningful and natural complexity measures
  - Accuracy guarantees / optimality
  - Scalability
  - Practical utility
- **Performance measure (analysis):** number of prediction mistakes



# **Vertex Classification The Shazoo algorithm**

- Learning on graphs/trees domains: hyperlinked webpages, social networks, co-author networks, biological networks, ...
- Our learning problem: Vertex classification of weighted, connected and undirected trees (and graphs) based only on graph topology
- We focus on binary labeling
- Bias: strongly connected nodes same label Weight cut-edges small

The Shazoo algorithm [Cesa-Bianchi et al. NIPS 2012]: input = weighted trees T (if the input is a graph G we can run Shazoo on a spanning tree T of G)

Shazoo (1) partitions T into components (satifying some properties), (2) uses mincut for estimating the labels of the component border vertices, (3) uses a NN method for predicting the required label

# Shazoo Algortihm: Analysis, implementation and computational complexity

**Accuracy:** #mistakes of Shazoo is optimal (up to log factors)

**Implementation: simple and fast recursive method** (based on sum-product algorithm) for using the mincut strategy

Time complexity:

- On line protocol: Worst case time per prediction: O (#vertices)
  (rarely encountered in practice)
- Batch protocol (vertices are split into training and test sets):
  Worst case time for predicting all labels of the test set: O (#vertices)

**Space complexity: Linear in #vertices** 



# **Shazoo algorithm Experiments**

- Real-world weighted graphs: web spam detection, character recognition, text categorization and bioinformatics
- Competitors: LABPROP (label propagation algorithm), OMV (label majority vote of adjacent nodes) and WTA (Weighted Tree Algorithm)
- We used spanning trees generated in different ways for running Shazoo (and WTA)
- Experiment protocol: batch (training set size = 5%, 10% and 25%)
- Main results:
  - Shazoo outperforms WTA and OMV on all datasets
    (unlike WTA it explicity exploits the tree structure)
  - Aggregating prediction of committees of random spanning trees via majority vote,
    Shazoo outperforms LABPROP when the training set size is small

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. See the tree through the lines: the shazoo algorithm. In Proc. of 25th NIPS, 2012.



# Link classification

# **Protocol: Active Learning (focus)**

# **Negative edges in real world networks:**

Disapproval or distrust in social networks, negative endorsements on the Web, inhibitory interactions in biological networks, sentiment between two individuals for recommender systems

# **Active learning protocol**

- Learner selects a set TrSet of edges (training set)
- All labels of the edges of TrSet are revealed
- Learner predicts the labels of all remaining edges



N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A correlation clustering approach to link classification in signed networks. Submitted, 2012.



# Active link classification Main results

- For this problem we studied a meaningful and natural complexity measure related to a notion of cutsize induced by Correlation Clustering
- Accuracy guarantees: We devised an algorithm optimal up to a  $O(\rho^{3/2}\sqrt{|V|})$  factor on any labeled graph G(V,E), while the test set size is not smaller than  $P = \infty$  times the training test size
- Scalability: Our algorithm requires an amortized time per prediction equal

to 
$$O\left(\sqrt{\frac{|V|}{\rho}}\log|V|\right)$$

- Research directions:
  - Use **randomization** against adversarial label assignment
  - Test our algorithm on real-world graphs drawn from different domains: social networks (Epinions, Slashdot), movie rating datasets (Movielens) and other web datasets (political election datasets, ...)

N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A correlation clustering approach to link classification in signed networks. Submitted, 2012.

# UCL Activities (Part I)

- Exploiting the structure of a graph (resistance metric)
- Fast online algorithms for labeling a graph
- A triangle inequality for p-resistance.
  - p-resistance generalises the effective resistance of a network
  - Laplacian and Mincut methods popular, p-resistance for SSL generalises both
  - Fundamental inequality for p-resistance
  - Geometric insight given for k-center clustering
- Efficient prediction for tree markov random fields in a streaming model
  - Exponential speedup for online tree MRF vertex marginalization
  - Computational complexity characterised by a particular hierarchal covering of a tree



Identify a graph with a network of resistors



$$r_p(a,b) = \left[\min_{u \in \mathbb{R}^n} \left\{ \sum_{(i,j) \in E(\mathbf{G})} \frac{|u_i - u_j|^p}{\pi_{ij}} : u_a = 1, u_b = 0 \right\} \right]^{-1}$$

$$r_{p}^{\text{par}}(a,b) = \left(\sum_{i=1}^{n} \frac{1}{\pi_{i}}\right)^{-1} \qquad r_{p}^{\text{ser}}(a,b) = \left(\sum_{i=1}^{n} \pi_{i}^{\frac{1}{p-1}}\right)^{p-1}$$

Identify a graph with a network of resistors



**Definition:** The (effective) *p*-resistance from *a* and *b* is

$$r_p(a,b) = \left[\min_{\boldsymbol{u} \in \mathbb{R}^n} \left\{ \sum_{(i,j) \in E(\mathbf{G})} \frac{|u_i - u_j|^p}{\pi_{ij}} : u_a = 1, u_b = 0 \right\} \right]^{-1}$$

- p-Resistance trades off geodesic distance and connectivity
- Resistors in parallel
  Resistors in series

$$r_p^{\text{par}}(a,b) = \left(\sum_{i=1}^n \frac{1}{\pi_i}\right)^{-1} \qquad r_p^{\text{ser}}(a,b) = \left(\sum_{i=1}^n \pi_i^{\frac{1}{p-1}}\right)^{p-1}$$

Identify a graph with a network of resistors



Definition: The (effective) p-resistance from a and b is

$$r_p(a,b) = \left[\min_{\mathbf{u} \in \mathbb{R}^n} \left\{ \sum_{(i,j) \in E(\mathbf{G})} \frac{|u_i - u_j|^p}{\pi_{ij}} : u_a = 1, u_b = 0 \right\} \right]^{-1}$$

p-Resistance trades off geodesic distance and connectivity

Resistors in parallel Resistors in series

$$r_p^{\text{par}}(a,b) = \left(\sum_{i=1}^n \frac{1}{\pi_i}\right)^{-1} \qquad r_p^{\text{ser}}(a,b) = \left(\sum_{i=1}^n \pi_i^{\frac{1}{p-1}}\right)^{p-1}$$

Identify a graph with a network of resistors



Definition: The (effective) p-resistance from a and b is

$$r_p(a,b) = \left[\min_{\boldsymbol{u} \in \mathbb{R}^n} \left\{ \sum_{(i,j) \in E(\mathbf{G})} \frac{|u_i - u_j|^p}{\pi_{ij}} : u_a = 1, u_b = 0 \right\} \right]^{-1}$$

- p-Resistance trades off geodesic distance and connectivity
- Resistors in parallel Resistors in series

$$r_p^{\text{par}}(a,b) = \left(\sum_{i=1}^n \frac{1}{\pi_i}\right)^{-1} \qquad r_p^{\text{ser}}(a,b) = \left(\sum_{i=1}^n \pi_i^{\frac{1}{p-1}}\right)^{p-1}$$



- Electric Network (p = 2):  $r_2(a, c) \le r_2(a, b) + r_2(b, c)$
- ② Pipe Network (p = 1):  $r_1(a, c) \le \max(r_1(a, b), r_1(b, c))$
- ③ Generic  $p \in (1,\infty)$ :  $r_p(a,c) \leq \left(r_p(a,b)^{\frac{1}{p-1}} + r_p(b,c)^{\frac{1}{p-1}}\right)^{p-1}$





- Electric Network (p = 2):  $r_2(a, c) \le r_2(a, b) + r_2(b, c)$
- ② Pipe Network (p = 1):  $r_1(a, c) \le \max(r_1(a, b), r_1(b, c))$
- ③ Generic  $p \in (1,\infty)$ :  $r_p(a,c) \le \left(r_p(a,b)^{\frac{1}{p-1}} + r_p(b,c)^{\frac{1}{p-1}}\right)^{p-1}$





- Electric Network (p = 2):  $r_2(a, c) \le r_2(a, b) + r_2(b, c)$
- ② Pipe Network (p = 1):  $r_1(a, c) \le \max(r_1(a, b), r_1(b, c))$
- **3** Generic  $p \in (1,\infty)$ :  $r_p(a,c) \leq \left(r_p(a,b)^{\frac{1}{p-1}} + r_p(b,c)^{\frac{1}{p-1}}\right)^{p-1}$



#### Application: k-center clustering

#### Objective:

$$\min_{v_1^*,\dots,v_k^*\in V} \max_{v\in V} \min_{i\in\mathbb{N}_k} d(v,v_i^*).$$

#### Farthest first algorithm

```
Input: A set V=v_1,\ldots,v_n, a k\in\mathbb{N}, and a metric d(V,V)\to\mathbb{R} Initialization: \tilde{v}_1=v_1 for t=2,\ldots,k do \tilde{v}_t=\operatorname{argmax}_{v\in V}\min_{i\in\mathbb{N}_{t-1}}d(v,\tilde{v}_i) end for return \{\tilde{v}_1,\ldots,\tilde{v}_k\}
```

#### Theorem

Given a graph  $\mathcal{G}$  the farthest first algorithm gives a  $2^{p-1}$ -opt k-center clustering with respect to the p-resistance for p > 1.

# Efficient prediction for tree markov random fields (1)

#### Model

Given a tree-structured MRF at time t = 1, 2, ...

#### Actions:

- i) predict a label at a vertex on the tree
- ii) update by associating a label with a vertex
- iii) delete the label at a vertex.

#### Problem

**Problem:** Online belief propagation is *slow* — linear on a tree.



**Solution:** We construct a (*decomposition*) tree on the original **Result:** D-propagation is **fast** on a tree.

# Efficient prediction for tree markov random fields (2)

#### Decompose the tree...



# Efficient prediction for tree markov random fields (3)

#### **D-propagation**

We construct tree D from T of height  $\chi$  s.t.

$$\log(\operatorname{height}(T)) \le \chi \le \min(\log(|T|), \operatorname{height}(T)).$$

For update and prediction we then "*D*-propagate" on *D*.

|                | Online belief propagation | Online <i>D</i> -propagation |
|----------------|---------------------------|------------------------------|
| Prediction     | <i>O</i> (1)              | $O(\chi)$                    |
| Update         | O( T )                    | $O(\chi)$                    |
| Initialisation | O( T )                    | $O( T ^3)$ now $O(T)$        |

# UCL Activities (Part II)

- Learning with data-dependent hypothesis classes
- Theoretical and practical advances
- 2 papers:
  - Data dependent kernels in nearly-linear time
    - kernels on general (continuous) spaces capture data-defined structure
    - current methods scale poorly
    - exploit huge amounts of data
    - practical, fast
  - Tighter PAC-Bayes bounds through distribution dependent priors
    - bounds for exponential weights and SVMs
    - Localized PAC-Bayes analysis
    - encode assumptions about interaction of classifiers with data
    - tight bounds, new distribution-dependent complexity measure



## Data dependent kernels in nearly-linear time (1)

- kernels on general (continuous) domains capture structure in data
  - manifold structure, cluster structure etc.
- we want:
  - Fast (need to exploit lots of data to be robust)
  - automatic (no tuning or domain knowledge)
- Problem: Given space  $\mathcal X$  and subsample  $\mathcal V\subset\mathcal X$ ,  $|\mathcal V|=n$  and "intrinsic regularizer":

$$reg(h) = \mathbf{h}^{\mathsf{T}} \mathbf{Q} \mathbf{h} \tag{1}$$

where  $h: \mathcal{X} \to \mathbb{R}$  and  $h_i = h(v_i)$ , define kernel

 $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  such that:

- functions  $h \in \mathcal{H}_{\widetilde{\kappa}}$  smooth w.r.t. (1)
- $-\widetilde{K}$  extends kernel  $\mathbf{Q}^+$  from  $\mathcal{V}$  to  $\mathcal{X}$



# Data dependent kernels in nearly-linear time (2)

• One solution (Sindhwani et. al. 2005): pick basic  $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  then define

$$\langle h, g \rangle_{\widetilde{K}} := \beta \langle h, g \rangle_{K} + (1 - \beta) \boldsymbol{h}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{g}, \quad h, g \in \mathcal{H}_{K},$$
 (2)

- ullet kernel  $\widetilde{K}$  has closed form, but cubic complexity
- solution: disconnect  $\mathcal V$  from landmark points  $\mathcal L\subset \mathcal V$  at which functions in  $\mathcal H_K$  are measured
- Proposed RKHS has inner probuct:

$$\langle h, g \rangle_{\mathcal{K}} := \beta \langle h, g \rangle_{\mathcal{K}} + (1 - \beta)(h^*)^{\mathsf{T}} \mathbf{Q} \mathbf{g}^*, \quad h, g \in \mathcal{H}_{\mathcal{K}}, \quad (3)$$

where  $\mathbf{h}|_{\mathcal{L}}$  is restriction of  $\mathbf{h} \in \mathbb{R}^{\mathcal{V}}$  to  $\mathcal{L}$ ,  $\mathbf{h}^* \in \operatorname{argmin}_{\mathbf{h} \in \mathbb{R}^{\mathcal{V}}} \{ \mathbf{h}^{\mathsf{T}} \mathbf{Q} \mathbf{h} : \mathbf{h}(\ell) = \mathbf{h}(\ell), \ell \in \mathcal{L} \}.$ 

• Theorem:  $\check{K}(x, x')$  nearly-linear complexity in n



# Data dependent kernels in nearly-linear time (3)

- Benefit: robustness of using a huge graph (avoid short circuiting), but efficiently computable
- state of the art performance on large data-sets in SSL





- also follow ups:
  - efficient CV of many parameters
  - journal version in prep.
  - applying to RL to learn kernels on state space



# Tighter PAC-Bayes bounds through distribution dependent priors (1)

- Bounds for stochastic classifiers G<sub>O</sub> drawn from distribution Q on  $\mathcal{H}$
- trick is to define PAC-Bayes prior in terms of unknown distribution
- No relative entropy term in bounds
- Exponential weights: density on  $\mathcal{H}$  is

$$q(h) = \frac{1}{Z} e^{-\gamma \widehat{\text{risk}}_{\mathcal{S}}(h)}$$
 (4)

• bound: with probability at least  $1 - \delta$ ,

$$\mathrm{kl}(\widehat{\mathrm{risk}}_{\mathcal{S}}(G_Q),\mathrm{risk}(G_Q)) \leq \frac{1}{m} \left( \gamma \sqrt{\frac{2}{m} \ln \frac{2\sqrt{m}}{\delta}} + \frac{\gamma^2}{2m} + \ln \frac{2\sqrt{m}}{\delta} \right)$$

$$kl(q, p) := q \ln \frac{q}{p} + (1 - q) \ln \frac{1 - q}{1 - p}$$

• no complexity term – only parameter  $\gamma$ 



# Tighter PAC-Bayes bounds through distribution dependent priors (2)

RKHS regularization algorithms:

$$h_{\mathcal{S}}^* := \underset{h \in \mathcal{H}_K}{\operatorname{argmin}} \{ \widehat{\operatorname{risk}}_{\mathcal{S}}^{\ell}(h) + \eta ||h||_{K}^{2} \}$$
 (5)

 $\mathcal{H}_K$  is RKHS with norm  $||\cdot||_K$ .  $G_Q$  is GP with mean and covariance

$$\mathbb{E}[G(x)] = h_{\mathcal{S}}^*(x), \quad \operatorname{Cov}(G(x), G(x')) = \frac{1}{\gamma} K(x, x') \quad (6)$$

bound:

$$\mathbb{P}_{\mathcal{S}}\left(\mathrm{kl}(\widehat{\mathrm{risk}}_{\mathcal{S}}(G),\mathrm{risk}(G)) \leq \frac{1}{m}\left(\frac{2\gamma}{\eta^2 m}\ln\frac{8}{\delta} + \ln\frac{4\sqrt{m}}{\delta}\right)\right) \geq 1 - \delta$$

- KL term removed only parameters  $\eta$  and  $\gamma$  interpreted as complexity terms

#### **Future directions**

- We would like to extend the completion to September 2012
- Until September 2012
  - Extend results on fast online prediction for tree MRFs
  - Experiments with Bristol data set
- Post September 2012 : Extend *p*-resistance research
  - UCL and Tuebingen: 2 papers each p-resistance an open research area
  - Visit between UCL and Tuebingen (possibly also Insubria)
  - Some directions:
    - Computational issues (efficiency + representer theorem)
    - 2 Loss bounds over the full spectrum of  $p \in \infty$
    - Reinforcement learning application