ACID MINE WATERS AND CASE STUDIES FROM SPAIN Jorge Loredo. University of Oviedo. Spain

International Conference on Outbursts of Water from the Abandoned Mines. Causes, Consequences, Remediation and Responsability

18-19 March 2010, Litija - Slovenia

ACIDIC MINE DRAINAGE (A.M.D.)

Acid transference to fluvial system

Acidity

High content in sulphates and heavy metals

Sediments with high metals content

Damage to ecosystems

Lose of hydric resources

Unreclaimed spoil heaps are capable of generating highly polluting runoff during storm events.

There are abundant examples of waste rock piles releasing acidic leachates, which are polluting surface and groundwater. There are many entire rivers (and substantial reaches of others) which have effectively been removed from the inventory of fresh water resources due to mine water pollution.

CASE STUDIES

TINTO AND ODIEL RIVERS BASIN (HUELVA, SOUTH SPAIN)

Tinto and Odiel rivers cross in their upper course the Iberian Pyrite Belt, where ore deposits have been mined for thousands of years, but it was since the nineteenth century when they were intensively exploited. They have a natural acidity caused by the water circulation through materials with high content in sulphides.

The natural alteration of these sulphide-ore masses, together with the mining activity, have long been a source of pollution to the waters of the Tinto and Odiel rivers.

A.M.D. AND IBERIAN PYRITE BELT

A.M.D. POLLUTION SOURCES

- 1. Drainages
- 2. Spoil heaps: Ash, slags
- 3. Ore deposits: Pyrite, azufrones....
- 4. Ponds and flotation and cementation effluents
- **5. Irrigation of concentration areas**
- 6. Polluted areas

More than 130 mining exploitations

Thousand of ha affected and polluted water courses

Water courses: SO4: 20,000 mg/L

Fe: 1,000 mg/L,

Cu/Zn: 50/100 mg/L

As/Cd: 4/8 mg/L

Estuary >80 Kg/day As

TINTO AND ODIEL RIVERS BASIN

	As	Cd	Cu	Fe	Mn	Pb	Zn
Tinto	53.4	21.7	955.6	8927	1041		44.03
Odiel	4.56	6.19	771.6	1390	869.5	339.7	1660

Heavy metals mean contributions (ton yr⁻¹) from fluvial discharges of Odiel and Tinto rivers. (Source: Confederación Hidrográfica del Guadiana)

TINTO AND ODIEL RIVERS BASIN

	рН	Sulphates	Fe	Cu	Zn	Mn	Pb	Cd
Odiel (1)	7.4	44	0.01	0.03	0.44	0.04	0.00	0.00
Odiel (2)	2.2	23,464	306	185	358	350	0.9	1.9
Tinto (3)	1.9	11,590	3800	216	476	54	1.0	2.0

Concentration values (mg/l) and pH during a dry period. (1: Odiel before pollution takes place; 2: Odiel after pollution occurs; 3. Tinto after Rio Tinto mines) (Sainz et al, 2000).

Recent large-scale contamination events in Europe

have shown the potential risks of water pollution by mine waste and discharges from abandoned and active mines.

Only in Riotinto area there are more than 4000 ha of inactive spoil heaps emitting lixiviates.

In a raining day Tinto and Odiel rivers transport to the sea more heavy metals than the whole emitted during the Aznalcóllar desaster in 1998.

AMD AS A GLOBAL PROBLEM

 Tinto and Odiel rivers flow 20,000 tons/year of heavy metals and 1200000 tons/year of sulphates (Sáinz, Grande, de la Torre, 2000)

LAS CRUCES MINE

CASE STUDIES

The potential of this abandoned mine site to pollute the environment is enhanced by climatic characteristics, mineralogy of ore and proximity to urban areas.

T

MINE WASTES GEOCHEMISTRY

The unstabilisation of sulphides in supergene conditions dominates the geochemical behaviour of mine wastes. Combined factors of temperature and rainfall affect considerably the geochemical behaviour of mine wastes in the environment.

Hg and As concentrations within a trench in La Soterraña spoil heap

Depth (m)	Material	Concentration (mg.kg ⁻¹)					
(111)		Total As	Total Hg				
0.10	Waste	36,709	17				
0.35	Waste	26,446	1,992				
0.85	Waste	32,517	317				
1.80	Waste	28,708	936				
3.00	Waste	33,772	990				
4.50	Clay	316	539				

Santirso River, upstream El Terronal mine

Morgao stream ownstream Los Rueldos mine

> Morgao stream downstream Los Rueldos mine

San Juan River (Channeled)

MINE DRAINAGE GEOCHEMISTRY

pH: 1.84 - 2.11

Sulphates: 5,000 mg/l

Total As: 9.1–17.7 mg/l

Total Pb: 0.33 mg/l

Total Hg: 3.7 μg/l

SPOIL HEAP LEACHATES GEOCHEMISTRY

pH: 2.15 - 2.63

Sulphates: 2,900-4,600mg/l

Total As: 1.4-9.2 mg/l

Total Pb: 0.03-0.48 mg/l

Total Hg: 3.6-14 µg/l

MORGAO STREAM

_									
		Date	Flow (I/s)	Со	nductivity (µS/cm)	рН	As (mg/l)	Hg (µg/l)	
	Upstream mine	27-April	-		-	-	-	-	
(WORKS (Sampling point 7A)	26-May	0.1		168	6.11	< 0.2	< 1	
		23-June	-		-	-	-	-	
		28-July	-	-		-	-	-	
		Date	Fl (l/	ow /s)	Conductiv (µS/cm	vity)	рН	As (mg/l)	Hg (µg/l)
	Los Rueldos Mine	e 27-Apr	il	-	4543		2.49	12	< 1
	drainage (Sampling point 9	26-Ma	y	-	6355		2.55	6.3	< 1
		23-Jun	е	-	6115		2.50	7.9	< 1
		28-Jul	y	-	5065		2.28	8.5	< 1
		Date	Flow (I/s)	Co	onductivity (µS/cm)	рН	As (mg/l)	Hg (µg/l)	
Downstream mine		27-April	4.7		1008	8.6	0.34	<1	
	Works (Sampling point 10)	26-May	4		1080	7.41	0.44	< 1	
		23-June	1.2		1256	6.45	0.52	< 1	

1200

7.50

0.61

< 1

28-July

0.4

LA SOTERRAÑA

	Date	Flow (I/s)	Conductivity (µS/cm)	рН	As (mg/l)	Hg (µg/l)
Upstream mine works	27-April	0.09	415	7.88	<0.2	<1
	26-May	0.08	397	7.99	<0.2	<1
(Sampling point 1)	23-June	0.03	432	6.63	<0.2	<1
	28-July	0.02	289	6.72	<0.2	<1

	Date	Flow (I/s)	Conductivity (µS/cm)	рН	As (mg/l)	Hg (µg/l)
Downstram mine	27-April	0.2	809	8.2	26	<1
works	26-May	0.3	882	8.16	29	<
(Sampling point 3)	23-June	0.01	1397	7.70	41	V
	28-July	0.03	1753	7.75	44	V

	Date	Flow (I/s)	Conductivity (µS/cm)	рН	As (mg/l)	Hg (µg/l)
Muñón Cimero village (Sampling point 4A)	27-April				-	<1
	26-May	8.0	951	8.26	43	<1
	23-June	0.18	1185	8.03	52	<1
	28-July	0.17	1278	7.98	46	<t< td=""></t<>

100

As CONTENT IN SURFACE WATER IN A PART OF THE CATCHMENT

Flooding of mine works by pumping cessation can impacts the water environment as water levels recover ("rebound") to pre-mining levels.

The process of rebound in deep mines commonly leads to a marked deterioration in the quality of mine water. The flooding of open-pit mines to form pit lakes can also cause water quality to deteriorate.

Geothermal Project Barredo Shaft (HUNOSA)

INSTITUTO PARA LA REESTRUCTURACIÓN

ALTERNATIVO DE LAS COMARCAS MINERAS

Plan de la Mineria del Carbón y Desarrollo Alternativo de las Comarcas Mineras

MINISTERIO DE EDUCACIÓN Y CIENCIA

EDIFICIO PARA CENTRO

THE P

Acidic drainage from mines and associated drainage is a major cause of ground and surface water pollution. Given the longevity of these problems, the most sustainable solutions to ecological and socioeconomic damage wrought by such discharges will be those which require a minimum of operating expenditure such as the passive treatments.

PASSIVE TECHNOLOGIES OPTIONS

Aeration units

Settlement lagoons

Aerobic wetlands

Anoxic Limestone Drains (ALDs) and Oxic Limestone Drains (OLDs)

Compost wetlands

Reducing and Alkalinity Producing Systems (RAPS)

Permeable Reactive Barriers (PRBs)

Flow: 10 l/min Retention time: 24 h

Passive treatment system in an active gold mine in Asturias

REHABILITATIONOFASPONTESOPENPIT(Northern Spain)

Areas where extensive grazing was the pre-mining land use suitability should be returned to that status after mining. Mine works corresponding to open pit have been restored with very well results.

Thanks for your attention