Passive Treatment in Mine Remediation

James J. Gusek, P.E

Golder Associates, Inc. Lakewood, Colorado USA

Passive treatment \neq

If it's not a Black Box, what is it?

It's the:

- sequential
- ecological
- extraction

of metals in a man-made but naturalistic bio-system

Any water treatment process that:

- Utilizes common geochemical reactions typically assisted by microbes or plants,
- Does not require the addition of chemical reagents, power and/or short term exchange of process media, and
- Functions without human intervention for long periods.

Typical Wetland Ecosystem

Oxidation and Reduction Processes in Competition

Natural Wetland

Balances All Possible Processes

Versus

Constructed Wetland One Process is Emphasized in Each Cell

Major

Minor

- Hydroxide and oxide precipitation
- Sulphide and carbonate precipitation via Sulphate Reducing Bacteria (SRB)
- Carbonate dissolution/neutralization
- Filtering/settling of metal precipitates
- Metal uptake into plant tissues
- Adsorption onto organic & oxide materials

Anaerobic BCR's

Also known as Vertical Flow Bioreactors and Sulphate Reducing Bioreactors

Aluminum and heavy metal removal, pH adjustment, alkalinity & hardness additions

BCR Cell Construction

BCR Treatment Chemistry Review

 $SO_4^{-2} + 2 CH_2O \Rightarrow HS^- + 2HCO_3^- + H^+$ (Sulphate reduction and neutralization by bacteria) $Zn^{+2} + HS^- \Rightarrow ZnS (s) + H^+$ (Sulphide precipitation)

> $Fe^{+3} + 3 H_2O \Rightarrow Fe(OH)_3(s) + 3 H^+$ (Hydroxide precipitation on the surface)

> > $H^{+} + CaCO_{3} \Rightarrow Ca^{+2} + HCO_{3}^{-}$ *(Limestone dissolution)*

$AI^{3+} + 3H_2O => AI(OH)_3$ (Gibbsite) + $3H^+$

(problematic due to sludge buildup)

Conditions within BCRs are favorable for aluminum hydroxysulphate precipitation:

 $3AI^{3+} + K^{+} + 6H_2O + 2SO_4^{2-} => KAI_3(OH)_6(SO_4)_2 + 6H^+$ Alunite

 $\begin{aligned} & 6\text{Ca}^{2+} + 2\text{Al}^{3+} + 38\text{H}_2\text{O} + 3\text{SO}_4^{2-} => \text{Ca}_6\text{Al}_2(\text{SO}_4)_3(\text{OH})_{12} : 26\text{H}_2\text{O} + 12\text{H}^+ \\ & Ettringite \end{aligned}$

"Typical" Sulphate Reducing Bacteria Sources

System Design Parameters

NO COOKBOOK (YET)

 MIW Geochemistry controls cell sequencing & cell type

 Dimensions governed by Metal & Acidity Loading
i.e. concentration X flow rate

- Lab (proof of principle) tests
- Bench tests
- Pilot tests
- Limited full scale (modules)
- Full scale implementation

Passive Treatment: Lab - Proof of Principle Tests

Passive Treatment: Bench Scale Tests

Weekly sampling schedule is typical

Bench BCR Biopsy

Pilot Scale Cells

BCR - Missouri

Aerobic - Missouri Golder ssociates

Aerobic - Brazil

Selected Case Studies Applications of Biochemical Reactors and Aerobic Systems in the Passive Treatment of Mining Influenced Water

- West Fork, Missouri, USA (Large)
- Judy 14, Pennsylvania USA (Demo)
- Fran Mine, Pennsylvania USA (Pilot)
- Golinsky Mine, California USA (Pilot)

West Fork, Missouri

West Fork System Layout

- Settling Pond 3,000m²
- 2 Anaerobic (BCR) Cells 2,000m² each,
- 2m deep, 40mm HDPE liner substrate:
 - > 67% sawdust, 19% limestone (low Mn),
 - > 12% manure, 2% hay
- Aerobic Rock Filter 6,000m²
- HDPE-lined Aeration Pond 8,000m²
- Total cost (1996) with engineering: \$US 700,000

West Fork System Results

Influent Water pH – 7.8 s.u. Pb – 0.6 mg/L as aqueous lead carbonate complex Zn – 0.08 mg/L Sulphate ~180 mg/L

SRBR Effluent Water

pH - 7.8 s.u. (no change) **Pb - 0.027 to 0.05 mg/L** (meets NPDES standard) Zn - <0.05 mg/L Sulphate - <140 mg/L

4.5m³/min, 24 hours/day, 7 days/week; Constructed in 1996

Demo Scale BCR Judy 14 Pennsylvania Coal Mine

Constructed with Pennsylvania Growing Greener Funds by the Blacklick Creek Watershed Association

- Seepage from Abandoned Judy 14 underground coal mine (mined in 1950's)
- SAPS units were not working
- Elevated aluminum caused plugging problems
- Experience from a pilot system @ 9.5 L/min on a similar water was good

- Valved diversion pipe
- One SRBR Cell 0.75m deep, 1,300 m² bottom area, 300mm compacted clay liner, substrate:
 - ➢ 50% wood chips, 30% limestone;
 - > 10% manure, 10% hay
- Aerobic Rock Filter designed, but built undersized
- Total cost with engineering: \$US158,000

Judy 14 BCR Demo Results

Influent Water pH – 3.0 Fe – 45 mg/L AI – 33 mg/L *Mn – 2.6 mg/L* Zn – 0.86 mg/L Cu – 0.10 mg/L Ni – 0.32 mg/L BCR Effluent Water pH - 6.6 Fe - 0.5 mg/L AI - 0.07 mg/L Mn - 2.3 mg/L Zn - 0.06 mg/L Cu - BDL @.0009Ni - 0.002 mg/L

Flow: 38 Liters/min

Constructed in late 2002

Pilot Scale Anaerobic BCR Fran Mine Site - Pennsylvania Surface Coal Mine

The "worst acid drainage in Pennsylvania" – work sponsored by Allegheny Mtn Chapter of Trout Unlimited

- Abandoned surface coal mine seepage
- Mined in 1970's, pit was backfilled
- Injection of fly ash grout helped control MIW but it was not enough
- Total flow of 160L/m @ full scale impacts 8 km of trout fishery
- Bench scale BCR tests successful no plugging problems from aluminum precipitates
- Pilot system design and construction funded by private donations & government grants

- Valved diversion pipe (problematic)
- One BCR Cell 1m deep (buried), 404m² bottom area; 40mm PVC liner, substrate:
 - > 50% wood chips, 30% limestone;
 - > 10% manure, 10% hay
- Aerobic Rock Filter designed, but not built; mini version added later.
- Total construction cost: \$US42,400; engineering cost \$US20,000

Pilot Scale Anaerobic BCR Fran Mine Site

Soil Cover

Fran Mine Pilot BCR Results

Influent Water pH – 2.4 Fe – 298 mg/L *AI – 257 mg/L* Mn – 25 mg/L Cu – 0.56 mg/L Zn – 2.0 mg/L Acidity – 2,734 mg/L *Sulphate – 3,215 mg/L* Effluent Water pH - 6.4 $Fe - 64 mg/L (Fe^{+2}=46)$ AI - <0.02 mg/L Mn - 26.4 mg/L Cu - BDL @0.0009 mg/L Zn - 0.127 mg/LAlkalinity - 1,038 mg/L Sulphate - 752 mg/L

Flow: 3.8 to 7.6 L/m Constructed in late 2002 Design Complete; full scale on hold as of 2008

Golinsky Mine, California

Remote Location

- Bench Test (Jan '04 to May '04)
- Pilot Scale Test (July '04 to Sept '06) decommissioning data suggested about 20 yrs of longevity remained
- Full Scale Pipeline (Fall, '04)
- Full Scale Design SRBR module #1 (2008)
- Module 1 Construction 2009

- Valved diversion (off 150mm pipeline)
- One BCR Cell 0.75m deep, 95m² bottom area, 18mm HDPE PermalonTM liner, substrate:
 - > 40% co-gen fuel, 29% limestone, 1% ash,
 - > 10% rice hulls, 10% manure, 10% hay
- Aerobic Rock Filter not designed, but natural channel functioning as one.
- Total cost with engineering: ~\$US 350,000

Golinsky Mine, CA (USFS)

Influent

- pH 3.0
- Fe 104 mg/L
- AI 24.5 mg/L
- Mn 1.3 mg/L
- Zn 54.9 mg/L
- **Cu 9.0 mg/L** Ni – 0.031 mg/L Cd – 0.71 mg/L
- SO4 797 mg/L

Pilot BCR

45, 420 cubic meters treated over 27 months

Total cost with engineering: ~\$350,000

Effluent

pH – 7.2 Fe – 0.8 mg/L Al – 0.06 mg/L Mn – 2.5 mg/L Zn – 0.1 mg/L Cu – <0.003 mg/L Ni – 0.007mg/L Cd – 0.006 mg/L SO4 – 488 mg/L

Golinsky Pilot BCR

Why Don't Passive Systems Always Work As Designed?

- No design "Just build a swamp here, fill that pond over there with manure and call it good."
- Poor design Undersized for load, applying wrong geochemical approach, phased design lacking, complex geochemistry, startup and operational procedures.
- Not enough maintenance (<u>low</u> maintenance does not mean "NO" maintenance).
- Last minute changes to construction specs can affect system performance - experience helps.

Advantages of Passive BCR Treatment

- No aluminum plugging
- Uses waste organic materials
- Easy to test conceptual designs
- Simple to operate
- Resilient to loading variations
- Consumes sulphate or selenate
- Bury to minimize vandalism

- Can easily handle net acidic water or net alkaline water
- Generates more net alkalinity in effluent
- Might be able to place in underground mines
- Opportunities for community involvement in organic procurement

In Water Treatment, If You're Not Part of the Solution, You're Part of the Precipitate.

jgusek@golder.com

bazzie@golder.com

