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An Interesting Fact 



Feedback 

• FACT: beliefs (not just opinions) of readers  
depend on the news content they choose to 
consume. 

 

• e.g.:  heavy consumers of news have unrealistic 
expectations about crime rates, usage of drugs, 
teen sex, (overestimated) and prevalence  
of ethnic minorities, older people, lower social 
classes (underestimate). 
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Cultivation Theory 
• Cultivation theory: repeated exposure  

to a message shapes expectations, beliefs. 

 

     STUDY BIAS IN NEWS CONTENT 
  

• Social scientists study how news are 
chosen, presented, narrated...   
as biases in news content can  
affect (as well as reflect) biases in society. 
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News Content Analysis 
  

• Study how news are chosen, presented, 
narrated...  and how this 
affects (as well as reflects)  
biases in society / public opinion. 

 

• This is done “by hand”,  
on small numbers of news outlets,  
for short periods, for pre-specified 
questions   (“coding approach”). 
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News Coding 
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The MediaPatterns Project 

Involved about 10 people  
(+ extra social scientists)    over 5 years 

Goals:  
– to automate the analysis of news content,  

– to understand the workings of the media system,  

– to understand how science can be automated,  

– to operate with challenging patterns on large datasets... 

– to enjoy creating a large-scale infrastructure 
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The Problem with Large Projects... 
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Cannot cover all aspects 



   Getting  
the Data 
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The NOAM infrastructure 

• We developed a dedicated infrastructure for 
News Outlet Analysis and Monitoring 

 

• To gather and annotate data about: 

– News outlets 

– News items 

– News stories 

– Named entities 
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The Data 
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• We gather about 60K 
news items per day, from 
> 1000 outlets , 4400 rss 
feeds, in 22 languages , 
from 195 countries 
(machine translated into 
English if necessary) 

 

• We have analysed  ~55 
million news items 
 



Analysis of the Data 

• We are interested in macroscopic patterns  
found in the global news-system contents. 
 

• What kind of stories / people / topics make 
news? 

• What do editors want? What do readers 
want? 

• What patterns in style and narrative can be 
found? 

• Can we measure how people are affected?  
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Our Questions 

1. What is in the news ? 
1. What people ? 

2. Which stories are 
covered by whom? 

2. What do readers want? 

3. Any patterns in style? 
And narrative? 

4. Can we measure public 
mood? 
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Question 1: what is in the news? 

• There are stories about people.  
But: which stories and which people make it? 
 

• Short answer:  
the same few stories and the same few people  
occupy the most “real estate” 
 

• A power law... 
 
     [skipping method: stories are clusters of articles; entities are 

extracted, disambiguated, and their properties computed 
based on large data sets] 
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From Articles to Stories 

Few stories covered by many outlets 
Many stories covered by few outlets 

Stories= Clusters of articles 
  (bag of words similarity) 
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People in the News 
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Many people appear in just few               articles 
Few people appear in many articles 
(similar to income distribution) 



More in detail... 

• Which kinds of people are present  
in which kinds of stories? 

 

• What determines which stories are covered 
and which ones are neglected  
in a given outlet ? And in general ? 
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    People 
in the News 
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Consider the Top-100 richest 
people in the world. 
90 are men, 10 are women.  
 
We call this the M/F ratio. 
 
The M/F ratio varies with domain: 
 -Of the top 50 richest 
 athletes, all 50 are male. 
 -Of the top 100 celebrities, 
 35 are female.  
 -Of the top -10 fashion 
 models all 10 are female. 
 

M:F Ratio 
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Gender Bias in the Media 

• What about media attention? 
• Of the Top-1000 most mentioned people,  

how many are male? 
 

• How does this change by topic? 
 
 

• This involved analysing 476,528 articles in 
English language, and detecting their topic, as 
well as people and their gender. 
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Detecting Topics 

• Support Vector Machines 
trained on Reuters and 
New York Times tags as 
ground truth 
 

• High precision requested 
for tags to be applied 
(so: many articles left untagged) 

mediapatterns.enm.bris.ac.uk 



M:F by Topic 
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Validation 
• As validation we added the topic “female sports” where we 

expected more female names than in general sports.  
• While this was observed, the bias was still in favour of males. 
• The general pattern observed for income was also observed 

for media attention: 
 
   MF Sport > MF General > MF Fashion 
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Observations 
 

• Q: How does this shape beliefs,  
attitudes and opinions  
about gender? 
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   Which stories 
are covered 
by which 
outlets? 
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Mapping the EU Mediasphere 
 
We machine translated the top EU outlets 
into English (Moses + our innovations,  (*) 
 trained on europarl + other corpora) 
 
Details skipped but fun: 
eg we re-create a new language model 
every day automatically 
 
Clustered all articles into stories  
(bag of words) 
 
Question: which outlets tended to carry 
the same stories? 
 mediapatterns.enm.bris.ac.uk (*)  phrase-based SMT 



The Data 
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Outlets Covering Same Stories 

• Link outlets if they share more stories than 
expected by chance (chi-square scores).  
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Linking Countries 

• Since countries essentially match the 
communities, we generate a network of 
countries 
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Explaining the Relations 
• Thousands of different editors make their choices 

independently every morning based on their own 
different  goals.... yet ... 
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Blue: countries using Euro 
Embedding: MDS on content similarity
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Question 2 
 
What  
Readers  
Want 



What Readers Want 

• Can we predict  
the preferences of 
readers? 

• Data is available 
through RSS feeds... 

 

• How to exploit it? 
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What Readers Want 

• Even just using very basic data (textual content of 
title and snippet) it is possible to predict the 
preferences of readers... 
 

• Not a simple classification task, needs to be 
framed as a “learning to rank” task  
(competitive nature of the process) 
 

• Linear scoring function inferred from data, with 
SVMs, and used to choose which of 2 articles is 
likely to be preferred, by average reader... 
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NOTE: Correlation with demographics 
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Appeal  vs.  
non-public-affairs 
bias 
 

Public affairs= 
politics 
economics 
finance... 
 
Non-PA=  
entertainment 
sport 
... 



Question 3 
 

Writing Style 
and 

Narrative 
Patterns 

 

mediapatterns.enm.bris.ac.uk 



Writing Style 

Interested in large scale patterns involving writing style: 
-Readability 
-Language subjectivity 
 

-The first is captured with a standard measure (FRET)  
that has been shown to correlate well with ease of 
comprehension. 
 

-The second quantity was captured by detecting the  
adjectives in the text and measuring their “polarity”. 
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Readability 
 

• Flesch Reading Ease Test 
The higher the FRET the easier the text to read. 
 

• Scores range from 0-100. 
 

• 10K random news items per topic 
FRET (article ) = 206.835 - (1.015 · ASL) - 84.6 · ASW 
 

• ASL=average sentence length 
ASW = average syllables per word 
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Linguistic Subjectivity 

• We measure the percentage of sentimental 
adjectives over the total number of 
adjectives. 
 

• Adjectives detection by Stanford POS tagger. 
 

• We check for each adjective the presence of 
a SentiWordnet sentimental score >0.25 
(percentage of adjectives that have either 
positive or negative sentiment score >25%) 
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Outlet Similarity by Style 
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Topic Similarity by Style 
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Outlet Similarity by Topic Distribution 
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Appeal  vs.  
Linguistic Subjectivity (*) 
In 31 outlets. 
UK tabloids in green. 

(*) fraction of adjectives very polarised in sentiwordnet – see later 



Validations 
 

• CBC Newsround is the most easily readable outlet. 
than For validation reasons we added a set of articles from the BBC 
show CBBC-Newsround, which is a current affairs programme 
written specifically for children.  As expected the CBBC news were 
found to be the most readable collection of articles with a mean 
readability score of 62.50 (S.E.M. = 0.27). 
 

• Op/Ed Articles are more subjective than average. 
We collected 5766 Op/Ed articles of that kind in our period of study 
from 57 different media and we found that their linguistic 
subjectivity has a mean of 26.15% (S.D.=0.29%) while the mean 
subjectivity of main articles is 19.45% (S.D. = 0.22%). 
 

• Note: we also found a 72.5% correlation between readability and 
subjectivity (Spearman correlation, p=0.003). 
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Relation: style vs. demographics 

• For UK newspapers we obtained reader-demographics:  
[gender, age group, income group] 
and we computed similarity between outlets. 

• (from: Newspaper Marketing Agency at: www.nmauk.co.uk) 

 

 

• Writing Style Correlates with Reader Demographics - 
31.43%  
(Kendall correlation of the pairwise euclidean distances  
between outlets, p=0.048) 
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NARRATIVE ANALYSIS 

• Social scientists  like to think in terms of social 
actors, their actions, and the narrative linking 
them. 

• Roberto Franzosi of Emory University developed 
Quantitative Narrative Analysis (QNA) to identify 
key actor / action patterns in a set of articles. 

• Actors and actions (and sphere of action) are hand 
annotated... 

• We identified ACTORS with NOUN PHRASES, and 
ACTIONS with VERBS, and SVO triplets with 
narrative units 
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NY Times Corpus, Year 2002 – crime stories  



Networks of political support 

Example: US Presidential Elections 

 

Types of information about actors: 

• Party loyalties 

• Subject / object bias 

• Positive / negative action bias 
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Note: in primary phase 
many people oppose Romney 
Creating errors 



mediapatterns.enm.bris.ac.uk 



mediapatterns.enm.bris.ac.uk 



mediapatterns.enm.bris.ac.uk 



Question 4 

    

   Measuring 
Public Mood 
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The Face of Britain... 
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Animation of Mood Changes 
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Face Visualisation Tool: courtesy of http://grimace-project.net/ 
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Demos 

celebwatch. .enm.bris.ac.uk 

foundintranslation.enm.bris.ac.uk 

geopatterns.enm.bris.ac.uk/epidemics 

electionwatch.enm.bris.ac.uk 
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Conclusions 

• Many diverse case studies, trying to make a 
single point: standard machine learning 
technologies can help the social sciences to 
enter its “big data” (or -omics) phase. 

 

• We started from a single question: can we 
capture macroscopic scale patterns in the 
contents of the global media system? 
(of the type that a single observer cannot see) 
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Conclusions 

• This journey took us to deal with named 
entity disambiguation, social network 
analysis, narrative analysis, machine 
translation,  topic detection, sentiment 
analysis... but also databases, data 
visualisation, data mining... 

 

• I hope I managed to convey just part of the 
fun we had (dealing with social scientists, 
lawyers, psychologists)... 
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