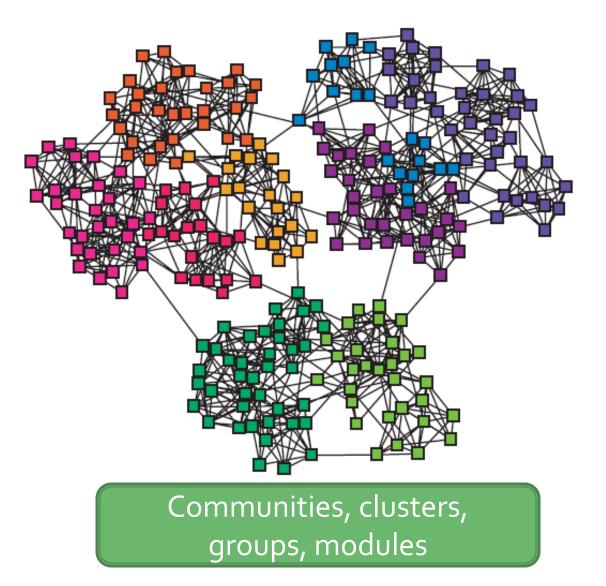
Empirical Comparison of Algorithms for Network Community Detection

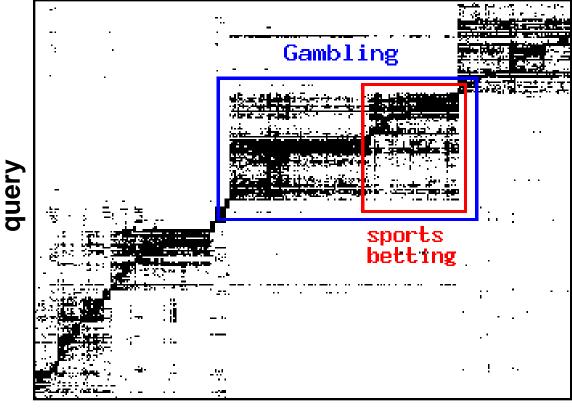
Jure Leskovec (Stanford) Kevin Lang (Yahoo! Research) Michael Mahoney (Stanford)

How we think about networks?



Micro-markets in sponsored search

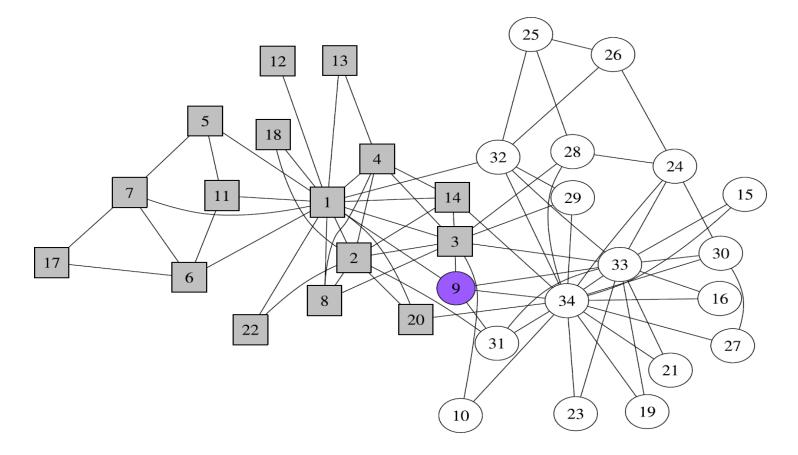
Micro-markets in "query × advertiser" graph



advertiser

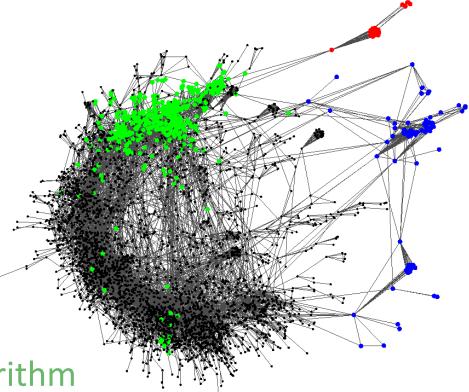
Social Network Data

Zachary's Karate club network:



Finding communities

- Given a network:
- Want to find clusters!
- Need to:
 - Formalize the notion of a cluster
 - Need to design an algorithm that will find sets of nodes that are "good" clusters



This talk: Focus and issues

Our focus:

- Objective functions that formalize notion of clusters
- Algorithms/heuristic that optimize the objectives
- We explore the following issues:
 - Many different formalizations of clustering objective functions
 - Objectives are NP-hard to optimize exactly
 - Methods can find clusters that are systematically "biased"
 - Methods can perform well/poorly on some kinds of graphs

This talk: Comparison

Our plan:

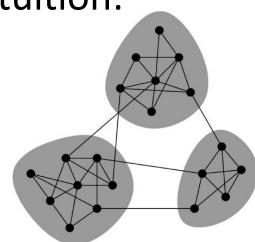
- 40 networks, 12 objective functions, 8 algorithms
- Not interested in "best" method but instead focus on finer differences between methods

Questions:

- How well do algorithms optimize objectives?
- What clusters do different objectives and methods find?
- What are structural properties of those clusters?
- What methods work well on what kinds of graphs?

Clustering objective functions

- Essentially all objectives use the intuition: A good cluster S has
 - Many edges internally
 - Few edges pointing outside
- Simplest objective function:
 - Conductance



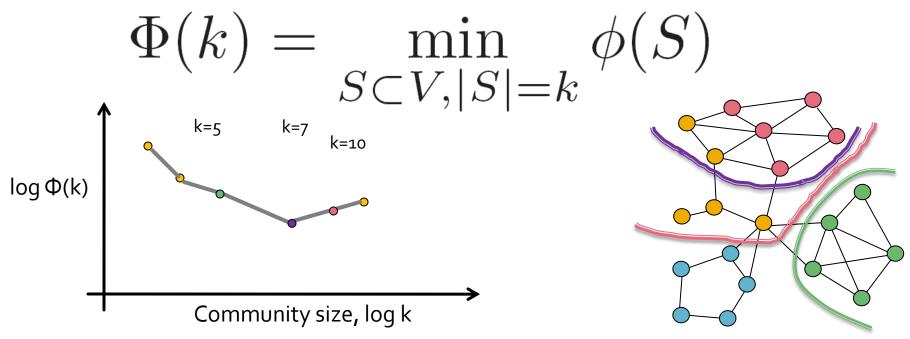
- $\Phi(S) = #edges outside S / #edges inside S$
- Small conductance corresponds to good clusters
- Many other formalizations of basically the same intuition (in a couple of slides)

Experimental methodology

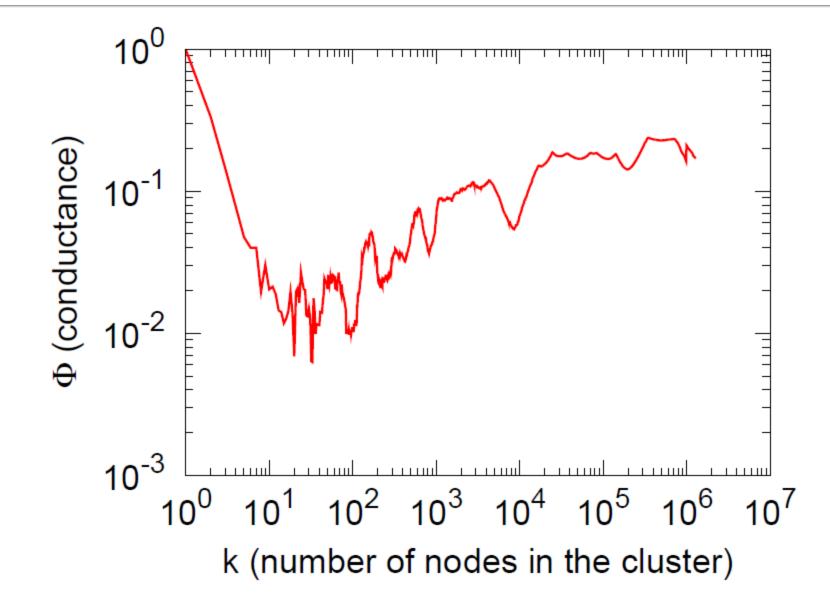
How to quantify performance:

What is the score of clusters across a range of sizes?
 Network Community Profile (NCP) [Leskovec et al. '08]

The score of best cluster of size k



Typical NCP



Plan for the talk

Comparison of algorithms

- Flow and spectral methods
- Other algorithms
- Comparison of objective functions
 - 12 different objectives
- Algorithm optimization performance
 - How good job do algorithms do with optimization of the objective function

Many classes of algorithms

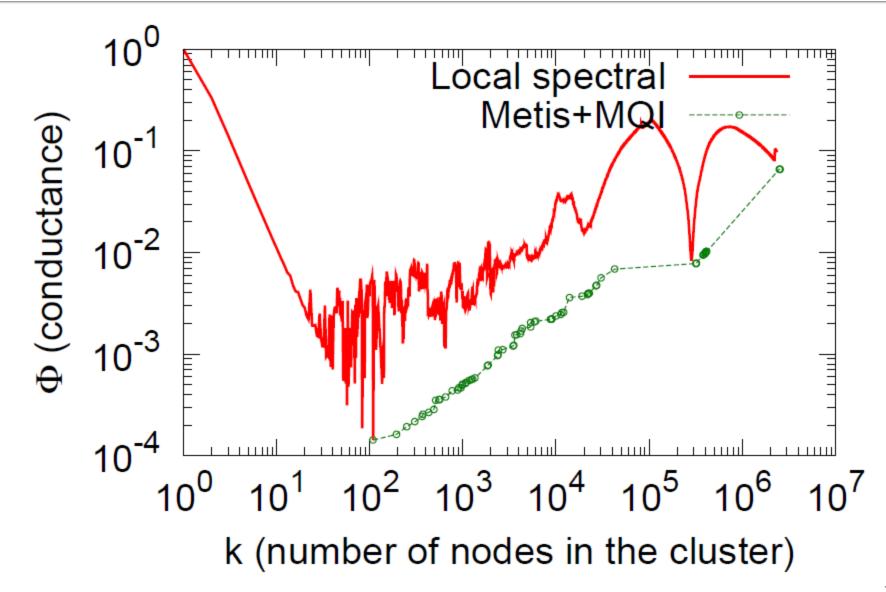
Many algorithms to extract clusters:

- Heuristics:
 - Metis, Graclus, Newman's modularity optimization
 - Mostly based on local improvements
 - MQI: flow based post-processing of clusters
- Theoretical approximation algorithms:
 - Leighton-Rao: based on multi-commodity flow
 - Arora-Rao-Vazirani: semidefinite programming
 - Spectral: most practical but confuses "long paths" with "deep cuts"

Clusters based on conductance

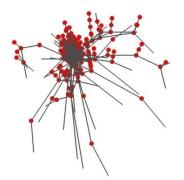
- Practical methods for finding clusters of good conductance in large graphs:
 - Heuristic:
 - Metis+MQI [Karypis-Kumar '98, Lang-Rao '04]
 - Spectral method:
 - Local Spectral [Andersen-Chung '06]
- Questions:
 - How well do they optimize conductance?
 - What kind of clusters do they find?

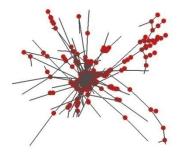
Results (LiveJournal network)



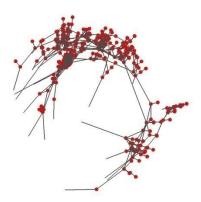
Properties of clusters (1)

500 node communities from Local Spectral:

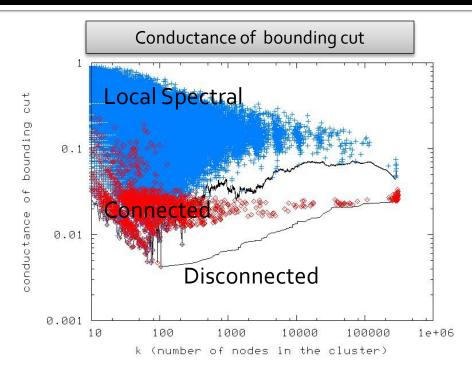




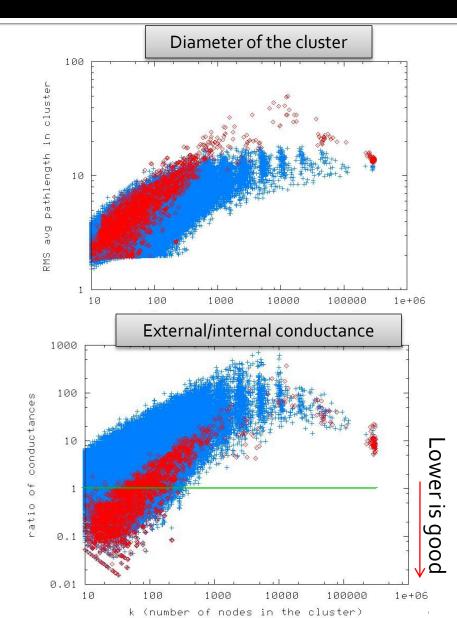
500 node communities from Metis+MQI:



Properties of clusters (2)

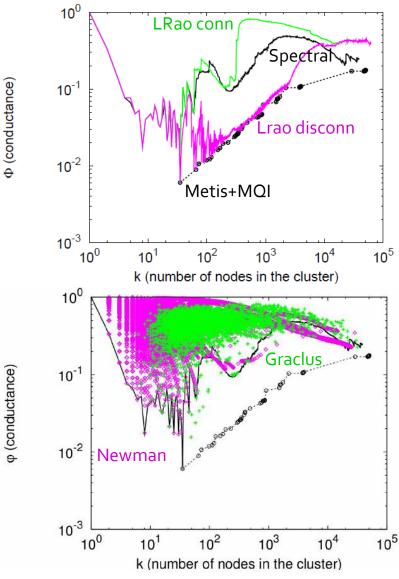


 Metis+MQI (red) gives sets with better conductance
 Local Spectral (blue) gives tighter and more wellrounded sets.



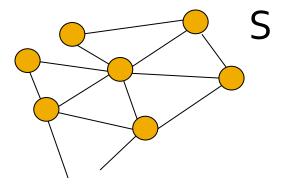
Other clustering methods

- LeightonRao: based on multi-commodity flow
 - Disconnected clusters vs.
 Connected clusters
- Graclus prefers larger clusters
- Newman's modularity optimization similar to Local Spectral



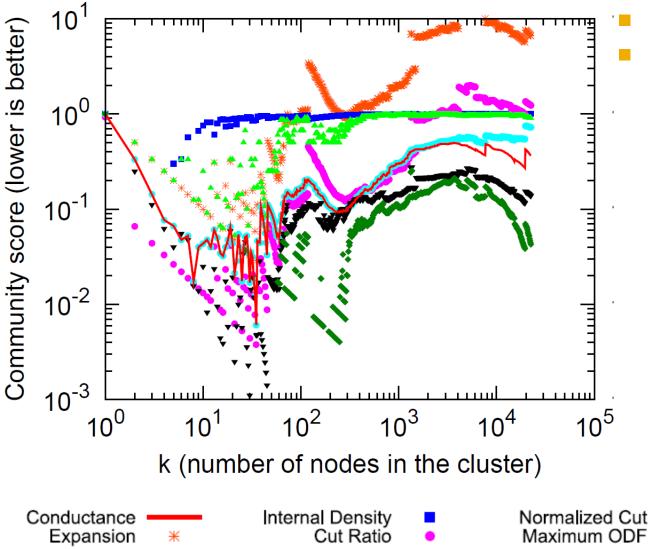
8 objective functions

- Clustering objectives:
 - Single-criterion:
 - Modularity: m-E(m)
 - Modularity Ratio: m-E(m)
 - Volume: $\sum_{u} d(u) = 2m + c$
 - Edges cut: c
 - Multi-criterion:
 - Conductance: c/(2m+c)
 - Expansion: c/n
 - Density: 1-m/n²
 - CutRatio: c/n(N-n)
 - Normalized Cut: c/(2m+c) + c/2(M-m)+c
 - Max ODF: max frac. of edges of a node pointing outside S
 - Average-ODF: avg. frac. of edges of a node pointing outside
 - Flake-ODF: *frac*. *of nodes with mode than* ¹/₂ *edges inside*



n: nodes in Sm: edges in Sc: edges pointing outside S

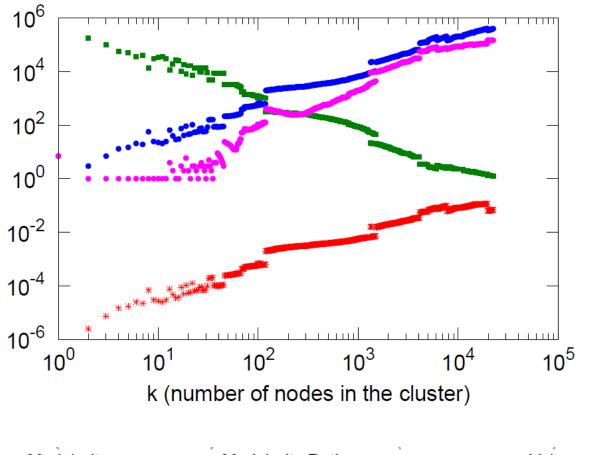
Multi-criterion objectives



Qualitatively similar

- Observations:
 - Conductance, Expansion, Normcut, Cut-ratio and Avg-ODF are similar
 - Max-ODF prefers smaller clusters
 - Flake-ODF prefers larger clusters
 - Internal density is bad
 - Cut-ratio has high variance
 - Avg ODF Flake ODF

Single-criterion objectives

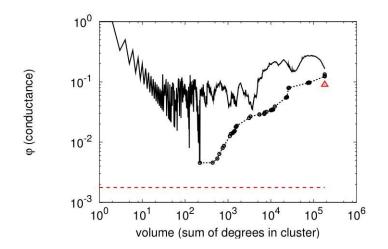


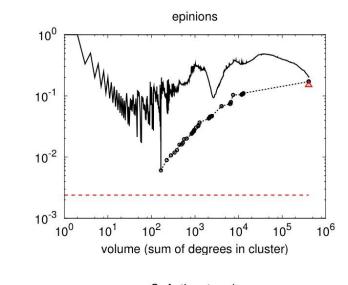
Observations:

- All measures are monotonic
- Modularity
 - prefers large clusters
 - Ignores small clusters

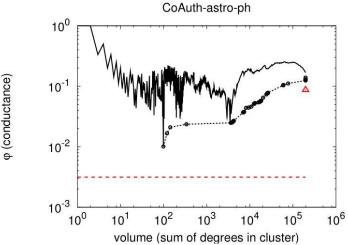
Lower and upper bounds

- Lower bounds on conductance can be computed from:
 - Spectral embedding (independent of balance)
 - SDP-based methods (for volume-balanced partitions)
- Algorithms find clusters close to theoretical lower bounds





p (conductance)



Conclusion

- NCP reveals global network community structure:
 - Good small clusters but no big good clusters
- Community quality objectives exhibit similar qualitative behavior
- Algorithms do a good job with optimization
- Too aggressive optimization of the objective leads to "bad" clusters

1 . + "

A Ster

12.2