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Overview

Relate complexity to cluster structure in input space
Cluster-structure dependent risk bounds (and algorithms)
Investigate the complexity of learning functions defined
over a graph
Transductive and semi-supervised bounds relative to
cluster structure in resistance metric
Relates learning to geometry defined by data



Motivations - learning on a graph

Predict the labelling of a graph G = (V, E)
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Understand complexity of learning over graph
Structure poorly understood from learning theory
perspective
Existing analyses weakly dependent on graph structure
Inspired by online bounds relative to cluster structure:

Theorem (Herbster 2008)

M ≤ O (N (G, ρ, r) + cut(h)ρ)

Understand the role of the structure in data generally



Preliminaries - Clustering

(X ,d) a metric space
defn. A clustering of S ⊂ X is any partition of S

C = {C1, ...CN}

defn. the center of Ck

ck := argmin
x∈X

∑
x ′∈Ck

d2(x ′,x)

For each x ∈ S, c(x) := ck where k is such that x ∈ Ck



Preliminaries - Graph labelling

Identify vertex vi ∈ V with standard basis vector ei in IRn

h ∈ IRn classifies vertices V = {v1, ...vn} via

h(vi) := sgn(h>ei) = sgn(hi)

Graph “smoothness functional” (graph cut)

FL(h) : =
1
2

h>Lh

=
1
2

∑
(i,j)∈E

(hi − hj)
2Aij

L is graph Laplacian, A is adjacency
Hφ := {h ∈ {−1,1}n : h>Lh ≤ φ}



Quantifying capacity
defn. empirical Rademacher complexity of H ⊂ IRX ,

R̂S(H) := IEσ

[
sup
h∈H

(
1
m

m∑
i=1

h(x i)σi

)]
p(σi = 1) = p(σi = −1) = 1

2
defn. Rademacher complexity Rm(H) := IES(R̂S(H))

Typically sharper than VC bounds

Rm(H) ≤ O

(√
VCdim(H)

m

)
Data-dependent measure of complexity...
e.g. consider Rm(Hφ) vs. VCdim(Hφ) on (n,

√
n)-lollipop:
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Duality of complexity on H and distance on X

H class of linear functions on X
defn. Norm || · || on H defines implied metric on X

d(x i ,x j) : = ||x i − x j ||∗

= sup
h∈H

|h(x i)− h(x j)|
||h||

.

implied metric used to measure cluster structure
e.g. RKHS H = span{K (x , ·) : x ∈ X}, ||h||K =

√
〈h,h〉K

has implied metric

dK (x ,x ′) : =
√

K (x ,x) + K (x ′,x ′)− 2K (x ,x ′).



Resistance geometry on G

e.g. H, functions over graph G
Norm ||h||2L := h>Lh on H
implied metric dL : V × V → IR is resistance distance

dL(vi , vj) : = ||ei − ej ||∗L =
√

(ei − ej)>L+(ei − ej)

Edges identified as resistors
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A B C

dL(B,C) < dL(A,B)

Geometry defined by the data
Relate learning to intrinsic structure of data



Rademacher complexity and cluster structure 1

F : H → IR≥0 is κ-strongly convex w.r.t. || · ||F on H
Hα := {h ∈ H : F (h) ≤ α}
dF (·, ·) is implied metric of || · ||F on X

Theorem (refinement of Kakade et. al. 2008)

For sample S = {x1, ...xm}, all clusterings C of S, all α > 0,

R̂S(Hα) ≤ B

√
|C|
m

+

√
2αρS
mκ

where ρS := 1
m
∑m

i=1 d2
F (x i , c(x i)) and B := suph∈Hα,x∈X |h(x)|

e.g. 1
2 || · ||

2
F is 1-strongly convex w.r.t. || · ||F

Relates learning to cluster structure in data
Optimized by best k -means clustering



Rademacher complexity and cluster structure 2

Theorem
For all clusterings C of X we have

Rm(Hα) ≤ BIES

[√
|CS |
m

]
+

√
2α
mκ

IES [
√
ρS ]

where CS := {Ck ∈ C : S ∩ Ck 6= Φ} is the clustering restricted
to the sample S.

Relates learning to cluster structure in data-generating
distribution



Is clustering an improvement?

Typical supervised setting data radius is small?
Resistance geometry: resistance very sensitive to
clustering
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non-empirical metrics not as sensitive to clustering: not
distribution dependent
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Specialize to transduction

Test set T and training set S presented simultaneously
S drawn uniformly without replacement from X = S ∪ T
Hφ := {h ∈ {−1,1}n : h>Lh ≤ φ}

Corollary

Given a graph G = (V, E), for any clustering C of V

Rtrs
m (Hφ) ≤ IES

[√
|CS |
m

]
+

√
φρ

m

where ρ := 1
n
∑n

i=1 d2
L(vi , c(vi)) and

CS := {Ck ∈ C : S ∩ Ck 6= Φ} is the clustering restricted to the
sample S.

Relates learning on graph to clustering in resistance



Comparison to VC dimension 1 - lollipops and barbells

VCdim(Hφ) ≤ O
(
φ
φ?

)
(Kleinberg 2004)

φ? minimum # edges required to disconnect G

e.g. lollipop-type
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: Rademacher better

e.g. n-barbell graph

49

51

:√
VCdim(Hφ)

m
≤ O

(√
φ

m

)

Rtrs
m (Hφ) ≤

√
2
m

+

√
φ

mn

Advantage of clustering: resistance between clusters large
Weighted graphs: even more improvement



Comparison to VC dimension 2 - paths

e.g. path graph
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√
VCdim(Hφ)

m
≤ O

(√
φ

m

)

Rademacher bound vacuous
Improved by passing to p resistance (Herbster and Lever
2009):

Family of p-norms on graph labellings

||h||p :=
(∑

(i,j)∈E |hi − hj |p
) 1

p

p-resistance: dp(vi , vj ) := ||ei − ej ||∗p
p resistance as p → 1 more suitable for sparse graphs



Transductive risk analysis

defn. Transductive risk riskT (h) := 1
u
∑u

i=1 `(h(xti ), yti )

(loss on test set T = {(X t1 ,Yt1), ...(X tu ,Ytu )})

Theorem

For any clustering C of V, with probability at least 1− δ over the
draw of S, simultaneously for all h ∈ {−1,1}n

riskT (h)− r̂iskS(h) ≤ O

n
u

(
IES

[√
|CS |
m

]
+

√
FL(h)ρ

m
+

√
log 1

δ

m

)
where ρ = 1

n
∑n

i=1 d2
L(vi , c(vi)) and CS = {Ck ∈ C : S ∩ Ck 6= Φ}

Suitable for e.g. mincut , TSVM, regularization of Belkin
and Niyogi, Energy minimiization of Zhu, Pelckmans and
Shawe-Taylor etc.
Suggests algorithms obtained by minimising over
clusterings and classifiers (and p)



Comparison 1

Theorem (Hanneke 2006)
With probability at least 1− δ simultaneously for all
h ∈ {−1,1}n,

riskT (h) ≤ r̂iskS(h) +O


√

n(u + 1)

u2

FL(h)
φ? ln n + ln 1

δ

m


where φ? is the minimum number of edges that must be
removed to disconnect the graph

New bounds preffered for highly clustered graphs



Comparison 2

Theorem (Pelckmans and Shawe-Taylor 2007)
With probability at least 1− δ,

sup
h∈Hφ

|riskT (h)− r̂iskS(h)| ≤
√

2(n −m + 1)

nm
log
|Hφ|
δ

with |Hφ| ≤
(

en
nφ

)nφ
where nφ := |{λi : λi ≤ φ}|.

Relates transductive classification risk to spectrum {λi}ni=1
of graph Laplacian



Extension to semi-supervised learning

Relate learning to cluster structure in all labelled and
unlabelled data I = {(X1, y1), ...(Xm, ym),Xm+1, ...Xn}

Theorem
` a K -Lipschitz loss function. For all clusterings C, C′ of I, with
prob 1− δ, for all h ∈ H̃β ⊆ Hα.

risk`(h) ≤ r̂isk`S(h) +O

(
Rtrs

m (H̃β) + R̂ind
I (Hα) +

√
1
m

log
1
δ

)

Rtrs
m (H̃β) ≤ O

(√
|C|
m

+

√
β

mn

∑
x∈I

d2
F̃

(x , c(x))

)

R̂ind
I (Hα) ≤ O

√ |C′|
n

+
1
n

√
α
∑
x∈I

d2
F (x , c′(x))


dF (·, ·) and dF̃ (·, ·) are metrics on X implied by || · ||F and || · ||F̃



Conclusions

Relate complexity to cluster structure of data
Specialized to clustering in resistance geometry

Convex duality analysis of learning on a graph

Risk analysis for transduction w.r.t. resistive geometry
Suggests algorithms related to cluster structure
Open problems:

Understand how structure of graph relates to learning
Spectral approach, resistance clustering, combinatorial,
graph theoretic...
Question for data structure more generally


