#### **Exploiting Feature Covariance in High-Dimensional Online Learning**

Justin Ma (UCSD → Berkeley), Alex Kulesza (UPenn),

Mark Dredze (Johns Hopkins), Koby Crammer (The Technion), Lawrence K. Saul (UCSD), Fernando Pereira (Google)

**Presentation for AISTATS** 

May 14, 2010



#### **Online Learning of Linear Classifiers**

.Input  $\mathbf{X}_t$ .Predict  $\hat{y}_t = \operatorname{sign}(\mathbf{w}_t \cdot \mathbf{x}_t)$ .Receive label  $y_t \in \{-1, +1\}$ .Record error if  $y_t \neq \hat{y}_t$ .Modify  $\mathbf{W}_t$ 





#### **Real-World Motivations**

- . Industrial-scale applications
  - Large data sets
     (~10<sup>6</sup>-10<sup>9</sup> examples)
  - Nonstationary data, drifting concepts
- Attractions of online learning
  - Single pass over data
  - . Incremental update
  - . Low overhead in storage & compute





## **High-Dimensional Applications**

- Ex: sentiment classification, malicious URL detection, Web spam
- Bag-of-words  $\sim 10^{6}$  features
- New features introduced over time





Malicious URLs



# Which online algorithm?

Perceptron [Rosenblatt, 1958]

Stochastic gradient [generalization in Bottou, 1998] Bayesian logistic regression [MacKay, 1992] [Jaakkola & Jordan, 2000]

Online convex programming [Zinkevich, 2003] Second-order perceptron [Cesa-Bianchi et al, 2005] Passive-aggressive [Crammer et al, 2006]

Confidence-weighted [Dredze et al, 2008] Online ellipsoid method [Yang et al, 2009] AROW [Crammer et al, 2009] AdaGrad [Duchi et al, 2010]

Trend toward more complex updates ...(e.g., using **2nd-order** information)



# Which online algorithm?

Perceptron [Rosenblatt, 1958]

Stochastic gradient [generalization in Bottou, 1998] Bayesian logistic regression [MacKay, 1992] [Jaakkola & Jordan, 2000]

Online convex programming [Zinkevich, 2003] Second-order perceptron [Cesa-Bianchi et al, 2005] **Passive-aggressive** [Crammer et al, 2006]

**Confidence-weighted** [Dredze et al, 2008] Online ellipsoid method [Yang et al, 2009] AROW [Crammer et al, 2009] AdaGrad [Duchi et al, 2010]

Trend toward more complex updates ...(e.g., using **2nd-order** information)



Perceptron [Rosenblatt, 1958]

.Per-mistake update:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_t \mathbf{x}_t$$



.Convergence in finite rounds for separable data



#### Passive-Aggressive (PA) Algorithm [Crammer et al., 2006]

Constrained optimization

$$\begin{array}{rcl} \mathbf{w}_{t+1} & \leftarrow & \operatorname*{argmin} & \frac{1}{2} \| \mathbf{w}_t - \mathbf{w} \|^2 \\ & \mathbf{w} & \\ & \mathrm{s.t.} & y_t (\mathbf{w} \cdot \mathbf{x}_t) \geq 1 \end{array}$$

Closed-form update Amount of error  
Proportional 
$$\alpha_t = \max \left\{ \begin{array}{c} 1 - y_t(\mathbf{w}_t \cdot \mathbf{x}_t) \\ \|\mathbf{x}_t\|^2 \end{array}, 0 \right\}$$

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha_t y_t \mathbf{x}_t$$



#### **Confidence-Weighted (CW) Learning**

[Dredze et al., 2008] [Crammer et al., 2009]

Gaussian distribution over weight vector:

$$\mathbf{w}_t \sim \mathcal{N}(oldsymbol{\mu}_t, oldsymbol{\Sigma}_t^{-1})$$
 How to this

How to represent this matrix?

.Constrained problem:

$$(\boldsymbol{\mu}_{t+1}, \boldsymbol{\Sigma}_{t+1}^{-1}) \leftarrow \underset{\boldsymbol{\mu}, \boldsymbol{\Sigma}^{-1}}{\operatorname{argmin}} \operatorname{KL}(\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}^{-1}) \| \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t^{-1}))$$
  
s.t.  $\operatorname{Pr}[y_t(\mathbf{w} \cdot \mathbf{x}_t) \ge 0] \ge \eta$ 

 $\begin{array}{rcl} \text{.Closed-form update:} & \mu_{t+1} & \leftarrow & \mu_t + \alpha_t y_t \boldsymbol{\Sigma}_t \mathbf{x}_t \end{array} \begin{array}{rcl} \text{Update features} \\ \text{at different rates} \end{array} \\ \boldsymbol{\Sigma}_{t+1}^{-1} & \leftarrow & \boldsymbol{\Sigma}_t^{-1} + \frac{\alpha_t \phi}{\sqrt{u_t}} \mathbf{x}_t \mathbf{x}_t^\top \end{array}$ 





#### Diagonal



✓O(n) storage

Low compute time

✗ O(n<sup>2</sup>) storage

X High compute time

Why bother with full?



## **Benefits of Full**

- When do we benefit from full covariance?
- Synthetic experiment: noisy correlated features
  - 100 runs, 1,000 examples, 1,000 binary features
  - . 5% of features flipped



#### **Noisy Correlated Features**



SE



#### Diagonal



- ✓O(n) storage
- Low compute time
- Ignores correlations

- ✗ O(n<sup>2</sup>) storage
- X High compute time
- X Exploits correlations

#### **Can obtain benefits of both?**



#### **Factored Approximation**



- Approx. full inv. covariance (called precision)
- O(kn) storage (k = number of factors)
- Compress matrix updates factor analysis



## **Factor Analysis**

Exact and approximate distributions

$$\rightarrow P(\mathbf{w}_t) = \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t^{-1})$$
$$\rightarrow \widehat{P}(\mathbf{w}_t) = \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{D}_t + \boldsymbol{R}_t \boldsymbol{R}_t^{\top})$$

Minimize KL divergence using EM procedure

min 
$$\operatorname{KL}(P_t, \widehat{P}_t)$$

Computation cost: O(nk<sup>2</sup>)



## Synthetic with CW-fact



# Benefits of approximating full in real-world applications?



## **Detecting Malicious URLs**

- Live feature collection of URLs
- Per trial: 200,000 examples, 10<sup>6</sup> features (mostly binary)



# **Web Spam Classification**

- Web pages [PASCAL Large-Scale Learning competition]
- Per-run: 175,000 examples, 680,000 features (text 3grams)



#### Document Classification [Dredze et al., 2008]

• 2,000-18,000 examples, 10<sup>4</sup>-10<sup>6</sup> features



U

1

## Conclusion

- Full and factored covariance help when...
  - features are correlated
  - #features > #examples

     (not needed when #examples > #features [Sec. 2])
- Factored improves high-dimensional apps
  - NLP, URL classification, Web spam, others
- Future work
  - Correlation modeling in other online algorithms?
  - Other ways to model correlation structure?



#### **Code is Available**

http://sysnet.ucsd.edu/projects/url/

Coauthors in Sardinia...









#### **Update Compression**





#### **Buffering Updates**

