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Who cares about dependence?

Unsupervised learning
— Which observations are dependent / independent

Supervised learning
— |Is there dependence between inputs and outputs?

Analysis of stock markets, physical, biological, chemical systems
— Dependence between observations?

Other applications
Feature selection, Boosting, Clustering

Information theory, Channel capacity, Information geometry,
Optimal experiment design, active learning,
Prediction of protein structure, Drug design, fMRI data processing,

Microarray data processing, Image registration, [CA/ISA... etc ;



What is dependence §7?

(A1) 0<46(X) <y, X=(Xy1,...,Xg), v can be o
(A2) 0(X)=0<« (X1q,...,Xy) independent
(A3) 6(X) =~ & deterministic relation in (Xq,...,X3)

(A4) invariance for 1-to-1 transform., permutation
(A5) consistent with |corr| for normal distribution

(A6) superadditivity: X =(Y,Z) = 6(X) > 6(Y) + 6(Z)

Alfréd Rényi

Reényi’s information

1 d l-«
Ia(Xlz---:Xd) — O5_1|Og/(1_[ f(xz)) fa(ajl,...,.ﬁvd)diﬁl---dl’d
=1
Rényi’s entropy
1
Ha(Xl,...,Xd) - 1_a|Og/fa(33]_,...,$d)d$]_"'dﬂ?d

a—1 a—1



Shannon mutual information

B ) N f(z1,...,2q)
I(X) = /f( 1y d)logf(;cl)---f(wd)
d

= Y H(X;))— H(X1,...,Xy)
1=1

dry---dxg

Measuring uncertainty (Shannon entropy)

H(X1,...,Xg) = —/f(X) log f (x) dx Claude Shannon

o0

(D
The estimation problem:

Let X, X1 ..., X" e R be i.i.d. variables.
Estimate Io(X) given the sample X1'» = [X1, ... X"] € RIXn|

d 11—«
L log fx(fx (%)) (j]le fx, (%)) dx

Ia(X)Za—l




1 d l—«
Io(X) = — log /x fx (%) (Hl fx; (%)) dx,
j—

d
fx (x) dx = —H (X)+ Y H(X;)
=1

X p—
nX) = [ fxlog e () 3

How can we estimate them?

e Plug-in estimators: estimate the densities fx, fx;, ..., fx,
- density estimators (histograms or kernel density estimators)
- tuneable parameters, cross validation for model selection
- density function is a nuisance parameter

e Direct (not plug-in based) estimators



History of Graph optimization methods

TSP, MST, kNN —
« 1959, Beardwood, Halton, Hammersley = - !
— Given uniform iid samples on [0,1]2. TSP length=? ‘\.U
L(xt,....X"/y/n — p>0 as. /f 4
— Observations with density f on [0,1]¢ J. Hammersley

L(Xt, ... X)) /nld=1)/d _, ,Bd/f(:r:)(d_l)/ddm as.
e 1981 — TSP = MST, Minimal Matching graphs, conjecture for kKNN

Michael Steele
|-llo=1-13, O<p<d

L(X1, .. Xn’)/n(d p)/dﬁﬁdp/f(x)(d Py a.s.
Iog/fo‘(x)dx

Joseph Yukich Wansoo Rhee

Hy (X)) =




Steele, Yukich theorem for
MST, TSP, Minimal Matching

Let Z,Z1,...,Z" be i.i.d. on [0, 1]¢ with density fz.
d>2, 0<a<1l. Let pzd—da MST on 2D uniform:

Define Euclidean functional: 08

=

La(Z¥)y =min Y |1Z; - Z|P
" GES (i Her@)

The entropy estimator: 03 "
0.2k !
H (Zlin) = _1 9 Ly (Z17) WD;\;%‘:?
n T 1—05 g Bd’p na 0 T 1 1 | 1 l=a
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1

= H, — Hq(Z) almost surely as n — oo.

Sensitive to outliers...!

(Fig taken from J. Costa and A. Hero) 8



How can we get information estimators from entropy
estimators?

How can we make the estimators more robust?

The invariance trick

Information is preserved under monotonic transformations.
Let Z = (Zy1,...,29) = (91 (X1),---,94 (X)) = g(X)

where g; :R =+ R, 7 =1,...,d, is a monotone function.
Q)
i 1 AONRWE:
Z
Io (Z) = Iogf ( & ) ( 11 /2, (zj)) dz = I (X)
a—1 2\~ fz, (Zj) j=1
L) J

When the marginals of Z are uniform, = I, (Z) = —Hn(Z), too.
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Transformation to get uniform marginals
Monotone transformation leading to uniform marginals?
Prob theory 101: X; ~ F; cont. = F;(X;) ~ U[O, 1]

The transformation (copula transformation):
Let X = [-Xla-"aXd] — [Fl(Xl):*"aFd(Xd)] — [Zla'”:Zd] =7
o

©

Monotone transform  Uniform marginals

J

—/

* Information estimation problem is reduced for
Rényi s entropy estimation
* a little problem: we don t know F’; distribution functions
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Empirical copula transformation

Solution:
Use empirical distributions F;" and empirical copula transform.
We need this in 1D only! = no curse of dimensionality.

We don 't know F, ...,Fy distribution functions
= estimate them with empirical distribution functions

(1) (2) (n)] — 1 n
[Xjﬂ <X <X ]—sort{Xj,...,Xj}

1
FM(X;) = i/n Fir(X;)
2/n
1/n
E @ @ @

X(l)XJ(Q) X — X(Z) X(n) V 11



Empirical copula transformation

“true” copula:

X = [le---aXd] — |F1(X1 :"'aFd(Xd)I = [Zl,...,Zd] =7
.. Z Zg
empirical copula:
X = [X1,0 Xal = (X, o P X)) = |20, 2] = 2
Z1 Z,

empirical copula transformation of the observations:

t t n t n t
Xt XY = [ EXl),...,Fd gxd)] e
7t — ™ Xt Zi Z& ® Zt
ZIZn: [Zl)HWZn] c Rdxn %%7 Zt
O
O
@® True copula transform

® Empirical copula transform 1/n  2/n  3/n
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REGO Algorithm
Rank-based Euclidean
Graph Optimization

1., Empirical copula transformation
Theinput X1,...X" is mapped into the unit hypercube Z1,... Z"
so that the marginals become approximately uniform.

Xt = [Xt,...,X{ﬂ — [FR(X)),.... F}(xh) = {Zt,...,zg — 7t
7t
1

2., Rényi entropy calculation
The transformed sample (Z1,...,Z") is sent to an algorithm
that estimates the a-entropy of it.
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Theoretical Results

Consistency
Malin theorem:

Letd >3, 1/2<a<1.

Let X, X1, ...,X" bei.i.d. random variables, supported on [0, 1]¢
with density f = fx.

Assume that & € { TSP, MST, MM, k-NN } and consider the
corresponding estimator H, = H,(Z'™; ®) obtained by running

the REGO algorithm on Xt» = (X1 ... Xn).

= —Hp — I,(X) almost surely as n — oo.

) o
D Note:

 Consistent MI estimator using ranks only

 We don’t have theoretical results for other d and « values...

» Ranks only = Robust ) .




Theoretical Results
Infinitesimal robustness

The finite sample influence functions (with some modification)

The amount of change caused by adding one outlier, X

D An(x) = [Hpp1(Xiin,x) — Hn(X1:p)[ = 0(n™%) 1/2<a<1. 7
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Empirical results, consistency in 10D

10 -
sl Cop—KNN | |
—=— cop-MST
6_ ]
= 4t
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0
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True Mi
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(b) 10D Gauss copula 16



Independent Subspace Analysis

R

-

X1 cR2X? c R2X3 e R?

X =

N Observation

Xl
X2
X3

— X A

NN

4

S

2000 6

Goal: Estimate A and S observing samples from X only

2000

Hidden, independent sources
> (subspaces)

Sl
S2 | € R®
53

— AS c R®

) A € R®*® unknown mixing matrix

2
2
2
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Independent Subspace Analysis

Xl

. - 1 v2 v3

X = Xi = AS€R®  Objective: W@ﬁQXﬁI(Y=YvY)
X

Y = WX = WAS < R®

W € R6*6

In case of perfect
separation WA Is a
block permutation
matrix

[ ) B 4 (I S /) B LS R




Take me home!

4 ) 4 )
Graph optimization methods :
TSP MST. KNN Copula transformation
\_ / \_ /

N e

{Mutual Information estimation}

Marriage of seemingly unrelated mathematical areas
produced a consistent and robust
Rényi’s mutual information estimator
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Thanks for your attention! @

“Hey Rege, ROka Rege, Hey REGO Rejtem. ..
| am calling my grandfather, | sense his soul here.
| am listening to his words, they are breaking the silence.
Impart your knowledge to your grandson please,
1000 years have already passed...,
Knowledge equals life, hey!”



