Dense Message Passing for Sparse Principal Component Analysis

Kevin Sharp Magnus Rattray

University of Manchester

AlStats, Chia Laguna Resort, Sardinia, 14th May 2010

イロト イポト イヨト イヨト

Outline

Introduction

Motivating Application: Gene Regulation

2 Dense Message Passing

- Model Description
- Algorithm Description
- Statistical Mechanics Theory

3 Results

- Simulated Data
- Gene Expression Data
- Marginal Likelihood Estimation

▶ < ⊒ ▶

Motivating Application: Gene Regulation

Motivation

- Gene regulation inference of explanatory factors.
- Microarray data 'Large *p* small *N*' regime.
- Explanatory factors have truly sparse loadings.
- Zero-norm priors allocate probability mass to truly sparse solutions.
- Easy to encode prior knowledge of sparse structure.
- But, zero-norm priors are problematic for inference.

Model Description Algorithm Description Statistical Mechanics Theory

Model - Probabilistic PCA

• For the n^{th} data point, y_n , we assume:

 $\boldsymbol{y}_n = \boldsymbol{w} \boldsymbol{x}_n + \boldsymbol{\epsilon}_n \; ,$

where $x_n \sim \mathcal{N}(0, 1)$.

- To simplify the description, $\epsilon_n \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- Integrate out *x*:

$$P(\boldsymbol{y}_n | \boldsymbol{w}) = \mathcal{N}\left(\boldsymbol{y}_n | \boldsymbol{0}, \boldsymbol{I} + \boldsymbol{w} \boldsymbol{w}^{\mathsf{T}}\right)$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Model Description Algorithm Description Statistical Mechanics Theory

Model - Probabilistic PCA

• For the n^{th} data point, y_n , we assume:

$$\boldsymbol{y}_n = \boldsymbol{w}\boldsymbol{x}_n + \boldsymbol{\epsilon}_n \; ,$$

where $x_n \sim \mathcal{N}(0, 1)$.

- To simplify the description, $\epsilon_n \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- Integrate out x:

$$P(\boldsymbol{y}_n | \boldsymbol{w}) = \mathcal{N}\left(\boldsymbol{y}_n | \boldsymbol{0}, \boldsymbol{I} + \boldsymbol{w} \boldsymbol{w}^{\mathsf{T}}\right)$$

・ロト・日本・日本・日本・日本・日本・日本

Model Description Algorithm Description Statistical Mechanics Theory

Sparsity Mixture Prior

We use a spike and slab mixture prior:

$$P(\mathbf{w}|C,\lambda) = \prod_{j=1}^{p} \left[(1-C)\delta(w_j) + C\mathcal{N}(w_j|0,(\lambda)^{-1}) \right]$$

Model Description Algorithm Description Statistical Mechanics Theory

ヘロン 人間 とくほど くほとう

æ

Sparsity Mixture Prior

Express in factorised form using binary variables $z_i \in \{0, 1\}$:

$$P(\mathbf{v}, \mathbf{z}) = \prod_{j=1}^{p} \{ (1 - C) \mathcal{N}(v_j | 0, 1) \}^{1-z_j} \{ C \mathcal{N}(v_j | 0, \lambda^{-1}) \}^{z_j}$$

where $w_j = z_j v_j$ and $v_j \in \mathcal{R}$

Model Description Algorithm Description Statistical Mechanics Theory

・ロン ・聞と ・ ヨン・

Form of the Prior in High Dimensions

- $z_j \sim \text{Bernoulli}(C)$
- $\sum_j z_j \sim \operatorname{Bin}(p, C)$
- For large dimension, *p*, the fraction of non-zero parameters is highly peaked at *C*.

Model Description Algorithm Description Statistical Mechanics Theory

Form of the Prior in High Dimensions

•
$$P(w_j|z_j = 1) = \mathcal{N}(w_j|0, \lambda^{-1})$$

• For large dimension, *p*:

$$\|\boldsymbol{w}\|^2 \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{C}\boldsymbol{p}/\lambda)$$

For large dimension, *p*, this distribution is approximately spherical with radius √Cp/λ.

Conclusion - A constraint-based prior:

$$p(\boldsymbol{w}, \boldsymbol{z} | \boldsymbol{C}, \lambda) \propto \delta \left(\sum_{j=1}^{p} z_j - p \boldsymbol{C} \right) \delta \left(\sum_{j=1}^{p} w_j^2 - \frac{p \boldsymbol{C}}{\lambda} \right)$$

is almost equivalent to the mixture prior in high dimensions.

イロト イポト イヨト イヨト

 This proves useful for developing the message passing algorithm.

Model Description Algorithm Description Statistical Mechanics Theory

Factor Graph Representation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - のへで

Model Description Algorithm Description Statistical Mechanics Theory

Belief Propagation

Model Description Algorithm Description Statistical Mechanics Theory

Factor to Variable Messages

$$\hat{\mathcal{M}}_{n \to \ell}^{t+1}(\boldsymbol{v}_{\ell}, \boldsymbol{z}_{\ell}) \propto \int \prod_{j \neq \ell} d\boldsymbol{v}_{j} \sum_{\boldsymbol{z} \setminus \boldsymbol{z}_{\ell}} f_{n}(\boldsymbol{y}_{n}, \boldsymbol{z}, \boldsymbol{v}) \prod_{j \neq \ell} \mathcal{M}_{j \to n}^{t}(\boldsymbol{v}_{j}, \boldsymbol{z}_{j})$$

Model Description Algorithm Description Statistical Mechanics Theory

Variable to Factor Messages

 $\mathcal{M}_{\ell \to n}^{t}(\mathbf{v}_{\ell}, z_{\ell}) \propto \mathcal{P}(\mathbf{v}_{\ell}, z_{\ell}) \prod_{m \neq n} \hat{\mathcal{M}}_{m \to \ell}^{t}(\mathbf{v}_{\ell}, z_{\ell})$

◆ロ▶ ◆■▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Model Description Algorithm Description Statistical Mechanics Theory

Marginal Beliefs

After *t* iterations, the approximate posterior marginal belief is:

$$p^{t}(z_{\ell}, v_{\ell} \mid \boldsymbol{Y}) = \frac{p(z_{\ell}, v_{\ell}) \prod_{m=1}^{N} \hat{\mathcal{M}}_{m \to \ell}^{t}(v_{\ell}, z_{\ell})}{\int \mathrm{d}v_{\ell} \sum_{z_{\ell}} p(z_{\ell}, v_{\ell}) \prod_{m=1}^{N} \hat{\mathcal{M}}_{m \to \ell}^{t}(v_{\ell}, z_{\ell})}$$

where $p(z_{\ell}, v_{\ell})$ is the prior.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Model Description Algorithm Description Statistical Mechanics Theory

イロト イポト イヨト イヨト

ъ

Two Problems

Unfortunately,

1

$$\hat{\mathcal{M}}_{n \to \ell}^{t+1}\left(\mathbf{v}_{\ell}, z_{\ell}\right) \propto \int \prod_{j \neq \ell} d\mathbf{v}_{j} \sum_{\mathbf{z} \setminus z_{\ell}} f_{n}\left(\mathbf{y}_{n}, \mathbf{z}, \mathbf{v}\right) \prod_{j \neq \ell} \mathcal{M}_{j \to n}^{t}\left(\mathbf{v}_{j}, z_{j}\right)$$

is hard to compute.

Belief propagation is not expected to converge for dense graphical models.

Model Description Algorithm Description Statistical Mechanics Theory

Solutions

Exploit the high-dimensionality:

Use a Gaussian approximation.

Impose consistency requirements:

Use the constraint-based prior to **enforce sparsity and length constraints** self-consistently at each iteration.

Uda and Kabashima - Statistical Mechanical Development of a Sparse Bayesian Classifier, *J. Phys. Soc. Japan*, 2005

Model Description Algorithm Description Statistical Mechanics Theory

イロト イポト イヨト イヨト

Gaussian Approximation (1)

Notice that likelihood factors may be written as:

$$f_n(\boldsymbol{y}_n, \boldsymbol{z}, \boldsymbol{v}) = \frac{1}{\sqrt{(2\pi)^p \left(1 + \|\boldsymbol{w}\|^2\right)}} \exp\left(-\frac{\boldsymbol{y}_n^{\mathsf{T}} \boldsymbol{y}_n}{2} + \Delta_n^2/2\right) ,$$

with Δ_n defined by: $\Delta_n = \frac{\sum_{j=1}^p y_j^n z_j v_j}{\sqrt{1 + \|\boldsymbol{w}\|^2}}$

For large dimension, p, Central Limit Theorem permits a Gaussian approximation.

Model Description Algorithm Description Statistical Mechanics Theory

Gaussian Approximation (2)

For constant $\|\boldsymbol{w}\|^2$, we replace Δ_n by:

$$\frac{y_{\ell}^{n} z_{\ell} v_{\ell}}{\sqrt{1 + Cp/\lambda}} + \underbrace{\frac{1}{\sqrt{1 + Cp/\lambda}} \sum_{j \neq \ell} y_{j}^{n} m_{j \rightarrow n}^{t}}_{\langle \Delta_{n \setminus \ell} \rangle_{n \setminus \ell}^{t}} u$$

where $u \sim \mathcal{N}(0, 1)$.

 $m_{j \to n}^{t}$ is the mean of $z_{j}v_{j}$ under the cavity distribution with the n^{th} data point removed.

Model Description Algorithm Description Statistical Mechanics Theory

Gaussian Approximation (3)

• The variance, $V_{n\setminus\ell}^t$ is given by:

$$\frac{1}{1+C\rho/\lambda}\sum_{j,k\neq\ell}y_j^ny_k^n\left\langle \left(z_jv_j-m_{j\rightarrow n}^t\right)\left(z_kv_k-m_{k\rightarrow n}^t\right)\right\rangle_{n\setminus\ell}^t$$

For large dimension, *p*, fluctuations about the sample mean are O (¹/_{√p}): V^t_{n\ℓ} is *self-averaging*.

•
$$V^t \approx \frac{1}{(1+Cp/\lambda)} \left(Cp/\lambda - \sum_{j=1}^{p} \left(m_j^t \right)^2 \right)$$

Model Description Algorithm Description Statistical Mechanics Theory

< < >> < </p>

Consistency - Constraint-based Prior

The spike and slab prior can be written:

$$P(\mathbf{v}, \mathbf{z}) \propto \prod_{j=1}^{p} \exp\left(-\frac{1}{2}\left(1 - z_j + Gz_j\right)\mathbf{v}_j^2 + \gamma z_j\right)$$

where
$$\gamma = \ln \left(\frac{C\sqrt{\lambda}}{1-C} \right)$$
 and $G = \lambda$.

Adjust G and γ at each iteration to satisfy the constraint-based prior on average: $\sum_{j=1}^{p} \langle z_j \rangle^t = Cp \text{ and } \sum_{j=1}^{p} \langle z_j v_j^2 \rangle^t = Cp/\lambda$

③ Note, after convergence, $G \neq \lambda$ and $\gamma \neq \ln \left(\frac{C\sqrt{\lambda}}{1-C}\right)$

Consistent with replica analysis.

Model Description Algorithm Description Statistical Mechanics Theory

< ロ > < 同 > < 三 >

Consistency - Constraint-based Prior

The spike and slab prior can be written:

$$P(\mathbf{v}, \mathbf{z}) \propto \prod_{j=1}^{p} \exp\left(-\frac{1}{2}\left(1 - z_j + G z_j\right) v_j^2 + \gamma z_j\right)$$

where
$$\gamma = \ln \left(rac{C\sqrt{\lambda}}{1-C} \right)$$
 and $G = \lambda$.

Adjust *G* and γ at each iteration to satisfy the constraint-based prior on average: $\sum_{j=1}^{p} \langle z_j \rangle^t = Cp \text{ and } \sum_{j=1}^{p} \langle z_j v_j^2 \rangle^t = Cp/\lambda$

③ Note, after convergence, $G \neq \lambda$ and $\gamma \neq \ln \left(\frac{C\sqrt{\lambda}}{1-C}\right)$

Consistent with replica analysis.

Model Description Algorithm Description Statistical Mechanics Theory

ヘロト ヘヨト ヘヨト

Consistency - Constraint-based Prior

The spike and slab prior can be written:

$$P(\mathbf{v}, \mathbf{z}) \propto \prod_{j=1}^{p} \exp\left(-\frac{1}{2}\left(1 - z_j + Gz_j\right) v_j^2 + \gamma z_j\right)$$

where
$$\gamma = \ln \left(\frac{C\sqrt{\lambda}}{1-C} \right)$$
 and $G = \lambda$.

Adjust *G* and γ at each iteration to satisfy the constraint-based prior on average: $\sum_{j=1}^{p} \langle z_j \rangle^t = Cp \text{ and } \sum_{j=1}^{p} \langle z_j v_j^2 \rangle^t = Cp/\lambda$

Solution Note, after convergence, $G \neq \lambda$ and $\gamma \neq \ln \left(\frac{C\sqrt{\lambda}}{1-C} \right)$

Consistent with replica analysis.

Model Description Algorithm Description Statistical Mechanics Theory

< ロ > < 同 > < 三 >

Consistency - Constraint-based Prior

The spike and slab prior can be written:

$$P(\mathbf{v}, \mathbf{z}) \propto \prod_{j=1}^{p} \exp\left(-\frac{1}{2}\left(1 - z_j + Gz_j\right) v_j^2 + \gamma z_j\right)$$

where
$$\gamma = \ln \left(rac{C\sqrt{\lambda}}{1-C} \right)$$
 and $G = \lambda$.

Adjust *G* and γ at each iteration to satisfy the constraint-based prior on average: $\sum_{j=1}^{p} \langle z_j \rangle^t = Cp \text{ and } \sum_{j=1}^{p} \langle z_j v_j^2 \rangle^t = Cp/\lambda$

③ Note, after convergence, $G \neq \lambda$ and $\gamma \neq \ln \left(\frac{C\sqrt{\lambda}}{1-C}\right)$

Onsistent with replica analysis.

Model Description Algorithm Description Statistical Mechanics Theory

イロト イポト イヨト イヨト

Replica Analysis (1)

- Compute average of the log marginal likelihood over all possible datasets for $p \to \infty$
- $\alpha = N/p$ is held constant (where N is the sample size).
- Works well for $\alpha \ll 1 \text{`large } p \text{ small } N$
- Not mathematically rigorous, but a useful tool.

Model Description Algorithm Description Statistical Mechanics Theory

Replica Analysis (2)

- Derive expressions involving the posterior mean (PM) parameter vector, *w*^{PM}:
 - squared length, $||\boldsymbol{w}^{\text{PM}}||^2$
 - overlap with the true parameter vector, $\boldsymbol{w}^{\text{PM}} \cdot \boldsymbol{w}^t$.

$$oldsymbol{w}^t \sim \prod_{j=1}^{p} \left[(1 - \mathcal{C}_t) \delta(oldsymbol{w}_j) + \mathcal{C}_t \mathcal{N}(oldsymbol{w}_j | \mathbf{0}, (\lambda_t)^{-1})
ight]$$

- Can show that the algorithm is consistent with this analysis.
- Can compare algorithm performance to theory using

$$\rho^{\mathsf{PM}} = \frac{\boldsymbol{w}^{\mathsf{PM}} \cdot \boldsymbol{w}^{t}}{||\boldsymbol{w}^{\mathsf{PM}}|| \, ||\boldsymbol{w}^{t}||} \, .$$

Simulated Data Gene Expression Data Marginal Likelihood Estimation

Simulated Data - DMP vs Theory

DMP

Gibbs

C - fraction of non-zero parameters;

$$N = 200$$
 samples, $\alpha = N/p$;

 $ho^{\rm PM}$ cosine angle between $\pmb{w}^{\rm PM}$ and $\pmb{w}^t.$ Results averaged over 50 sample datasets.

(日)

Simulated Data Gene Expression Data Marginal Likelihood Estimation

Simulated Data - DMP vs emPCA

DMP

emPCA

$$N = 200$$
 samples, $\alpha = N/p$;

 $\rho^{\rm PM}$ cosine angle between $\boldsymbol{w}^{\rm PM}$ and $\boldsymbol{w}^t.$ Results averaged over 50 sample datasets.

0.4

Ŧ

I I I

C

イロト イポト イヨト イヨト

0.6

Ξ

α=0.25

α=0.2

α=0.15

α=0.1

0.8

Simulated Data Gene Expression Data Marginal Likelihood Estimation

Simulated data - DMP vs SPCA

DMP

C - fraction of non-zero parameters;

$$N = 200$$
 samples, $\alpha = N/p$;

 ρ^{PM} cosine angle between $\boldsymbol{w}^{\text{PM}}$ and \boldsymbol{w}^{t} . Results averaged over 50 sample datasets.

イロト イポト イヨト イヨト

Simulated Data Gene Expression Data Marginal Likelihood Estimation

Gene Expression Data - DMP vs emPCA and SPCA

Armstrong et al.

Ramaswamy et al.

p = 12582, N = 72

Simulated Data Gene Expression Data Marginal Likelihood Estimation

Summary

Marginal Likelihood Estimation - Simulated Data

DMP

- C fraction of non-zero parameters;
- λ assumed signal precision;

True sparsity - 0.1.

N = 200 samples; dimension, p = 2000.

イロト 不得 とくほ とくほう

э

 λ^t - true signal precision.

- Novel message passing algorithm for Sparse Bayesian PCA in high dimensions
- Message updates rendered tractable using a Gaussian approximation
- Convergence achieved by imposing consistency requirements derived from statistical mechanics analysis.
- Inference of posterior marginals exhibits near optimal performance compared to theory.
- Outperforms two other recently published algorithms.
- Approximation to Marginal Likelihood also available.

- Novel message passing algorithm for Sparse Bayesian PCA in high dimensions
- Message updates rendered tractable using a Gaussian approximation
- Convergence achieved by imposing consistency requirements derived from statistical mechanics analysis.
- Inference of posterior marginals exhibits near optimal performance compared to theory.
- Outperforms two other recently published algorithms.
- Approximation to Marginal Likelihood also available.

- Novel message passing algorithm for Sparse Bayesian PCA in high dimensions
- Message updates rendered tractable using a Gaussian approximation
- Convergence achieved by imposing consistency requirements derived from statistical mechanics analysis.
- Inference of posterior marginals exhibits near optimal performance compared to theory.
- Outperforms two other recently published algorithms.
- Approximation to Marginal Likelihood also available.

- Novel message passing algorithm for Sparse Bayesian PCA in high dimensions
- Message updates rendered tractable using a Gaussian approximation
- Convergence achieved by imposing consistency requirements derived from statistical mechanics analysis.
- Inference of posterior marginals exhibits near optimal performance compared to theory.
- Outperforms two other recently published algorithms.
- Approximation to Marginal Likelihood also available.

- Novel message passing algorithm for Sparse Bayesian PCA in high dimensions
- Message updates rendered tractable using a Gaussian approximation
- Convergence achieved by imposing consistency requirements derived from statistical mechanics analysis.
- Inference of posterior marginals exhibits near optimal performance compared to theory.
- Outperforms two other recently published algorithms.
- Approximation to Marginal Likelihood also available.

- Novel message passing algorithm for Sparse Bayesian PCA in high dimensions
- Message updates rendered tractable using a Gaussian approximation
- Convergence achieved by imposing consistency requirements derived from statistical mechanics analysis.
- Inference of posterior marginals exhibits near optimal performance compared to theory.
- Outperforms two other recently published algorithms.
- Approximation to Marginal Likelihood also available.

The Future

• Hyperparameter estimation using Marginal likelihood.

• Extension to multiple factors:

• Relatively straightforward for orthogonal factors.

(but will require efficient hyperparameter estimation).

 For non-orthogonal factors the best approach is a subject of on-going research.

・ロト ・ 一下・ ・ ヨト・

3

The Future

- Hyperparameter estimation using Marginal likelihood.
- Extension to multiple factors:
 - Relatively straightforward for orthogonal factors.

(but will require efficient hyperparameter estimation).

 For non-orthogonal factors the best approach is a subject of on-going research.

イロト イポト イヨト イヨト

Explore further

Matlab code available from: http://www.cs.man.ac.uk/~sharpk

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

ъ