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Motivating Application: Gene Regulation

Motivation

Gene regulation - inference of explanatory factors.

Microarray data - ‘Large p small N ’ regime.

Explanatory factors have truly sparse loadings.

Zero-norm priors allocate probability mass to truly sparse
solutions.

Easy to encode prior knowledge of sparse structure.

But, zero-norm priors are problematic for inference.
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Model - Probabilistic PCA

For the nth data point, yn, we assume:

yn = wxn + εn ,

where xn ∼ N (0,1).

To simplify the description, εn ∼ N (0, I).

Integrate out x :

P (yn |w) = N
(

yn

∣∣∣0, I + wwT
)
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Sparsity Mixture Prior

We use a spike and slab mixture prior:

P(w |C, λ) =
∏p

j=1

[
(1− C)δ(wj) + CN (wj |0, (λ)−1)

]

C - Fraction of non-zero ws
λ - inverse width
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Sparsity Mixture Prior

Express in factorised form using binary variables zj ∈ {0,1}:

P (v , z) =

p∏
j=1

{
(1− C)N

(
vj |0,1

)}1−zj
{

CN
(

vj |0, λ−1
)}zj

where wj = zjvj and vj ∈ R
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Form of the Prior in High Dimensions

zj ∼ Bernoulli (C)

∑
j zj ∼ Bin(p,C)

For large dimension, p, the fraction of non-zero parameters
is highly peaked at C.
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Form of the Prior in High Dimensions

P(wj |zj = 1) = N (wj |0, λ−1)

For large dimension, p:

‖w‖2 ∼ N (0,Cp/λ)

For large dimension, p, this distribution is approximately
spherical with radius

√
Cp/λ.
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Conclusion - A constraint-based prior:

p(w , z |C, λ) ∝ δ

 p∑
j=1

zj − pC

 δ

 p∑
j=1

w2
j −

pC
λ


is almost equivalent to the mixture prior in high dimensions.

This proves useful for developing the message passing
algorithm.
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Factor Graph Representation



Introduction
Dense Message Passing

Results
Summary

Model Description
Algorithm Description
Statistical Mechanics Theory

Belief Propagation
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Factor to Variable Messages

M̂t+1
n→` (v`, z`) ∝

∫ ∏
j 6=`

dvj
∑
z\z`

fn (yn, z ,v)
∏
j 6=`
Mt

j→n
(
vj , zj

)
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Variable to Factor Messages

Mt
`→n (v`, z`) ∝ P (v`, z`)

∏
m 6=n

M̂t
m→` (v`, z`)
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Marginal Beliefs

After t iterations, the approximate posterior marginal belief is:

pt (z`, v` |Y ) =
p (z`, v`)

∏N
m=1 M̂t

m→` (v`, z`)∫
dv`
∑

z`
p (z`, v`)

∏N
m=1 M̂t

m→` (v`, z`)

where p (z`, v`) is the prior.
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Two Problems

Unfortunately,
1

M̂t+1
n→` (v`, z`) ∝

∫ ∏
j 6=`

dvj
∑
z\z`

fn (yn, z ,v)
∏
j 6=`
Mt

j→n
(
vj , zj

)
is hard to compute.

2 Belief propagation is not expected to converge for dense
graphical models.
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Solutions

1 Exploit the high-dimensionality:

Use a Gaussian approximation.

2 Impose consistency requirements:

Use the constraint-based prior to enforce sparsity and
length constraints self-consistently at each iteration.

Uda and Kabashima - Statistical Mechanical Development of a
Sparse Bayesian Classifier, J. Phys. Soc. Japan, 2005
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Gaussian Approximation (1)

Notice that likelihood factors may be written as:

fn (yn, z ,v) =
1√

(2π)p
(

1 + ‖w‖2
) exp

(
−yT

nyn
2

+ ∆2
n/2
)
,

with ∆n defined by: ∆n =
∑p

j=1 yn
j zj vj√

1+‖w‖2

For large dimension, p, Central Limit Theorem permits a
Gaussian approximation.
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Gaussian Approximation (2)

For constant ‖w‖2, we replace ∆n by:

yn
` z`v`√

1 + Cp/λ
+

1√
1 + Cp/λ

∑
j 6=`

yn
j mt

j→n︸ ︷︷ ︸
〈∆n\`〉tn\`

+
√

V t
n\`u

where u ∼ N (0,1).

mt
j→n is the mean of zjvj under the cavity distribution with the

nth data point removed.
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Gaussian Approximation (3)

The variance, V t
n\` is given by:

1
1 + Cp/λ

∑
j,k 6=`

yn
j yn

k
〈(

zjvj −mt
j→n
) (

zk vk −mt
k→n

)〉t

n\`

For large dimension, p, fluctuations about the sample
mean are O

(
1√
p

)
: V t

n\` is self-averaging.

V t ≈ 1
(1+Cp/λ)

(
Cp/λ−

∑p
j=1

(
mt

j

)2
)
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Consistency - Constraint-based Prior

1 The spike and slab prior can be written:

P (v , z) ∝
p∏

j=1

exp
(
−1

2
(
1− zj + Gzj

)
v2

j + γzj

)

where γ = ln
(

C
√
λ

1−C

)
and G = λ.

2 Adjust G and γ at each iteration to satisfy the
constraint-based prior on average:∑p

j=1

〈
zj
〉t

= Cp and
∑p

j=1

〈
zjv2

j

〉t
= Cp/λ

3 Note, after convergence, G 6= λ and γ 6= ln
(

C
√
λ

1−C

)
4 Consistent with replica analysis.
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Replica Analysis (1)

Compute average of the log marginal likelihood over all
possible datasets for p →∞

α = N/p is held constant (where N is the sample size).

Works well for α� 1 – ‘large p small N ’

Not mathematically rigorous, but a useful tool.



Introduction
Dense Message Passing

Results
Summary

Model Description
Algorithm Description
Statistical Mechanics Theory

Replica Analysis (2)

Derive expressions involving the posterior mean (PM)
parameter vector, wPM:

squared length, ||wPM||2

overlap with the true parameter vector, wPM ·w t .

w t ∼
∏p

j=1

[
(1− Ct )δ(wj ) + CtN (wj |0, (λt )

−1)
]

Can show that the algorithm is consistent with this
analysis.

Can compare algorithm performance to theory using

ρPM =
wPM ·w t

||wPM|| ||w t ||
.
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Simulated Data - DMP vs Theory
DMP

True Sparsity

α=0.25

Gibbs

True Sparsity

α=0.25

C - fraction of non-zero parameters; ρPM cosine angle between wPM and w t .

N = 200 samples, α = N/p; Results averaged over 50 sample datasets.
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Simulated Data - DMP vs emPCA
DMP

True Sparsity

α=0.25

emPCA

C - fraction of non-zero parameters; ρPM cosine angle between wPM and w t .

N = 200 samples, α = N/p; Results averaged over 50 sample datasets.
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Simulated data - DMP vs SPCA
DMP

True Sparsity

α=0.25

SPCA

C - fraction of non-zero parameters; ρPM cosine angle between wPM and w t .

N = 200 samples, α = N/p; Results averaged over 50 sample datasets.
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Gene Expression Data - DMP vs emPCA and SPCA

Armstrong et al.
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Ramaswamy et al.
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Marginal Likelihood Estimation - Simulated Data
DMP Gibbs

C - fraction of non-zero parameters; N = 200 samples; dimension, p = 2000.

λ - assumed signal precision; λt - true signal precision.

True sparsity - 0.1.
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Novel message passing algorithm for Sparse Bayesian
PCA in high dimensions
Message updates rendered tractable using a Gaussian
approximation
Convergence achieved by imposing consistency
requirements derived from statistical mechanics analysis.
Inference of posterior marginals exhibits near optimal
performance compared to theory.
Outperforms two other recently published algorithms.
Approximation to Marginal Likelihood also available.
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The Future

Hyperparameter estimation using Marginal likelihood.

Extension to multiple factors:

Relatively straightforward for orthogonal factors.

(but will require efficient hyperparameter estimation).

For non-orthogonal factors the best approach is a subject of
on-going research.
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Explore further

Matlab code available from: http://www.cs.man.ac.uk/~sharpk


	Introduction
	Motivating Application: Gene Regulation

	Dense Message Passing
	Model Description
	Algorithm Description
	Statistical Mechanics Theory

	Results
	Simulated Data
	Gene Expression Data
	Marginal Likelihood Estimation

	Summary

