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Outline

� RKHS embedding of probability measures

� Characteristic kernels

� Universal kernels

� Various notions of universality

� Novel characterization of universality

� Relation to RKHS embedding of signed measures
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RKHS Embeddings of Probability Measures

� Input space : X

� Feature space : H (with reproducing kernel, k)

� Feature map : Φ

Φ : X → H x �→ Φ(x) := k(·, x)

Extension to probability measures:

P �→ Φ(P) :=

∫
X

k(·, x) dP(x)

Advantage: Φ(P) can distinguish P by high-order moments.

k(y , x) = c0 + c1(xy) + c2(xy)
2 + · · · (ci �= 0) e.g. k(y , x) = exy

Φ(P)(y) = c0 + c1

(∫
X

x dP(x)

)
y + c2

(∫
X

x2 dP(x)

)
y2 + · · ·
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Applications

Two-sample problem:

� Given random samples {X1, . . . ,Xm} and {Y1, . . . ,Yn} drawn i.i.d.
from P and Q, respectively.

� Determine: are P and Q different?

� γ(P,Q) = ‖Φ(P)− Φ(Q)‖H : distance metric between P and Q.

H0 : P = Q H0 : γ(P,Q) = 0
≡

H1 : P �= Q H1 : γ(P,Q) > 0

� Test: Say H0 if γ̂(P,Q) < ε. Otherwise say H1.

Other applications:

� Hypothesis testing : Independence test, Goodness of fit test, etc.

� Feature selection, message passing, density estimation, etc.



Characteristic Kernels

Define: k is characteristic if

P �→
∫
X

k(·, x) dP(x) is injective.

In other words,∫
X

k(·, x) dP(x) =
∫
X

k(·, x) dQ(x) ⇔ P = Q.

� When k(·, x) = e
√−1〈·,x〉, Φ(P) is the characteristic function of P.



Characteristic Kernels

Define: k is characteristic if

P �→
∫
X

k(·, x) dP(x) is injective.

In other words,∫
X

k(·, x) dP(x) =
∫
X

k(·, x) dQ(x) ⇔ P = Q.

� When k(·, x) = e
√−1〈·,x〉, Φ(P) is the characteristic function of P.

� Not all kernels are characteristic, e.g., k(x , y) = xT y .

μP = μQ � P = Q

� When is k characteristic? [Gretton et al., 2007,
Sriperumbudur et al., 2008, Fukumizu et al., 2008,
Fukumizu et al., 2009, Sriperumbudur et al., 2009].
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� Regularization approach to supervised learning

min
f∈H

1

n

n∑
i=1

�(f (xi ), yi ) + λΩ[f ], (1)

where λ > 0 and {(xi , yi )}ni=1 is the training data.

� Representer theorem : The solution to (1) is of the form

f =
n∑

i=1

cik(·, xi ),

where {ci}ni=1 ⊂ R are the parameters typically obtained from the
training data.

� Question: Can f approximate any target function arbitrarily “well”
as n → ∞?

� We need H to be “dense” in the space of target functions — k is
universal.



Various Notions of Universality

� Prior work

� c-universality [Steinwart, 2001]

� cc-universality [Micchelli et al., 2006]

� Proposed notion: c0-universality

� Characterization of c-, cc- and c0-universality : Relation to RKHS
embedding of measures

� Translation invariant kernels on Rd

� Radial kernels on Rd
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� k : continuous on X × X

� Target function space : C (X ), continuous functions on X
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� k : continuous on X × X

� Target function space : C (X ), continuous functions on X

Define k to be c-universal if H is dense in C (X ) w.r.t. the uniform norm
(‖f ‖u := supx∈X |f (x)|).

� Sufficient conditions are obtained based on the Stone-Weierstraß
theorem. Not easy to check!

� Examples: Gaussian and Laplacian kernels on any compact subset of
Rd .

Issue: X is compact which excludes many interesting spaces, such as Rd .
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cc-universality [Micchelli et al., 2006]

� X : Hausdorff space

� k : continuous on X × X

� Target function space : C (X )

Define k to be cc-universal if H is dense in C (X ) endowed with the
topology of compact convergence.

� Necessary and sufficient conditions are obtained, which are related
to the injectivity of RKHS embedding of measures.

� Examples: Gaussian, Laplacian and Sinc kernels on Rd .

Issue: Topology of compact convergence is weaker than the topology of
uniform convergence.



Proposed Notion: c0-universality

� X : locally compact Hausdorff (LCH) space

� Target function space : C0(X ), the space of bounded continuous
functions that “vanish at infinity” (for every ε > 0,
{x ∈ X : |f (x)| ≥ ε} is compact).

� k is bounded and k(·, x) ∈ C0(X ) for all x ∈ X .



Proposed Notion: c0-universality

� X : locally compact Hausdorff (LCH) space

� Target function space : C0(X ), the space of bounded continuous
functions that “vanish at infinity” (for every ε > 0,
{x ∈ X : |f (x)| ≥ ε} is compact).

� k is bounded and k(·, x) ∈ C0(X ) for all x ∈ X .

Define k to be c0-universal if H is dense in C0(X ) w.r.t. ‖ · ‖u.
� Handles non-compact X and ensures uniform convergence over

entire X .
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� k is c0-universal if and only if
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is injective. Mb(X ) is the space of finite signed Radon measures on
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Postive Definite Characterization of Universality

Theorem

� k is c0-universal (resp. c-universal) if and only if∫
X

∫
X

k(x , y) dμ(x) dμ(y) > 0, ∀μ ∈ Mb(X )\{0}.

� k is cc-universal if and only if∫
X

∫
X

k(x , y) dμ(x) dμ(y) > 0, ∀μ ∈ Mbc(X )\{0}.

� If k is c-, cc- or c0-universal, then it is strictly positive definite.



X is an LCH space: Summary



Translation Invariant Kernels on Rd

X = Rd and k(x , y) = ψ(x − y), where

ψ(x) =

∫
Rd

e
√−1xTω dΛ(ω), x ∈ Rd ,

and Λ is a non-negative finite Borel measure.



Translation Invariant Kernels on Rd

X = Rd and k(x , y) = ψ(x − y), where

ψ(x) =

∫
Rd

e
√−1xTω dΛ(ω), x ∈ Rd ,

and Λ is a non-negative finite Borel measure.

Theorem

� k is c0-universal if and only if supp(Λ) = Rd .

� k is c0-universal if and only if it is characteristic.

� If supp(Λ) has a non-empty interior, then k is cc-universal.
[Micchelli et al., 2006]



Examples

� Gaussian kernel: ψ(x) = e−x2/2σ2

; Ψ(ω) = σe−σ2ω2/2; dΛ(ω) = Ψ(ω) dω.

−4 −3 −2 −1 0 1 2 3 4
0

1

x

ψ
(x

)

−4 −3 −2 −1 0 1 2 3 4
0

σ

Ψ
(ω

)

� Laplacian kernel: ψ(x) = e−σ|x|; Ψ(ω) =
√

2
π

σ
σ2+ω2 .
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Examples

� B1-spline kernel: ψ(x) = (1− |x |)1[−1,1](x); Ψ(ω) = 2
√

2√
π

sin2(ω
2
)

ω2 .
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� Sinc kernel: ψ(x) = sin(σx)
x

; Ψ(ω) =
√

π
2
1[−σ,σ](ω).
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Translation Invariant Kernels on Rd : Summary



Radial Kernels on Rd

Let

k(x , y) =

∫
[0,∞)

e−t‖x−y‖2
2 dν(t),

where ν is a finite non-negative Borel measure on [0,∞).

� Examples: Gaussian kernel, Inverse multi-quadratic kernel,
k(x , y) = (c2 + ‖x − y‖22)−β , β > d

2 , c > 0, etc.



Radial Kernels on Rd

Let

k(x , y) =

∫
[0,∞)

e−t‖x−y‖2
2 dν(t),

where ν is a finite non-negative Borel measure on [0,∞).

� Examples: Gaussian kernel, Inverse multi-quadratic kernel,
k(x , y) = (c2 + ‖x − y‖22)−β , β > d

2 , c > 0, etc.

Theorem
The following conditions are equivalent.

� supp(ν) �= {0}.
� k is c0-universal.

� k is cc-universal.

� k is characteristic.

� k is strictly pd.



Radial Kernels on Rd : Summary



Summary

� Characteristic kernel

� Injective RKHS embedding of probability measures.

� Applications: Hypothesis testing, feature selection, etc.

� Universal kernel

� Consistency of learning algorithms.

� Injective RKHS embedding of finite signed Radon measures.

� Clarified the relation between various notions of universality and
characteristic kernels.
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