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Stochastic Computation in Biology
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Biological Motivation

Evolution on different time scales

• Tracking cell lineages in an individual

• Understanding tumour growth, metastasis, response
to treatment

• Analysis of genome-wide association studies (GWAS)

• Ancestral history of humans (e.g. phylogeography,
admixture with Neanderthals)

• Estimating divergence times of primates from fossil
record
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Statistical Motivation

HIghly dependent data with nasty likelihoods

• Likelihood-free inference

• ABC: approximate Bayesian computation

• Not just Bayesian: useful in classical setting (e.g.
MLEs)

• A gentle overview of 3 basic ABC methods

• An example from stem cell biology
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Approach I: Rejection methods
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Introduction to Bayesian computation

• Discrete data D, prior π(θ) for parameters θ

• Aim: generate observations from posterior
distribution f(θ | D)

• We have
f(θ | D) ∝ P(D | θ)π(θ)

Posterior proportional to likelihood × prior
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Rejection methods I

R1 Generate θ from π(·)

R2 Accept θ with probability h = P(D | θ); repeat

Accepted observations have distribution f(θ | D)
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R1 Generate θ from π(·)

R2 Accept θ with probability h = P(D | θ); return to R1

Accepted observations have distribution f(θ | D)

Can do better: if

P(D | θ) ≤ c for all θ

then can replace h above with h/c
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The number of runs to get n observations from f(θ|D) is
negative binomial, with mean

nc

P(D)

This shows

– the effect of P(D)

– the effect of c

– a way to estimate P(D)
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Complex stochastic models

• A stochastic process often underlies the likelihood
computation

• This process may be complex, making explicit
probability calculations difficult or impossible

• Thus P(D | θ) may be uncomputable
(either quickly enough or theoretically)
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• A stochastic process often underlies the likelihood
computation

• This process may be complex, making explicit
probability calculations difficult or impossible

• Thus P(D | θ) may be uncomputable
(either quickly enough or theoretically)

Exploit simulation
Diggle P& R Gratton R (1984) JRSSB, 46, 193–227
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Rejection methods II

RS1 Generate θ from π(·)

RS2 Simulate D′ from stochastic model with parameter θ

RS3 Accept θ if D′ = D; repeat
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RS1 Generate θ from π(·)

RS2 Simulate D′ from stochastic model with parameter θ

RS3 Accept θ if D′ = D; repeat

• Just as before, accepted observations from this
algorithm have the density f(·|D)

• Despite its appearance, this algorithm is much more
general than first one — no need for explicit
calculation

Rubin DB (1984) Ann Statist, 4, 1151–1172
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Approximate Bayesian Computation I

A1 Generate θ from π(·)

A2 Simulate D′ from stochastic model with parameter θ

A3 Calculate distance ρ(D,D′) between D′ and D

A4 Accept θ if ρ ≤ ε; repeat
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• If ε→∞, generates from prior

If ε = 0, generates from f(θ | D)

• Choice of ε reflects tension between computability
and accuracy

– PCR — post-computational remorse

• Method is honest: you get observations from
f(θ | ρ(D,D′) ≤ ε)

• Works for continuous data (assuming ρ is a metric)
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Approximate Bayesian Computation II

• The limit ε = 0 reproduces the data precisely

• In many examples the data are too high-dimensional

• . . . so reduce dimension by using summary statistics
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An illustrative example (R. Wilkinson)

• X1, . . . , Xn iid N(µ, σ2)

• σ2 known, improper prior π(µ) ∝ 1

• Posterior is N(X̄, σ2/n)

• Assume X̄ = 0

• Use ABC, accepting µ if X̄ ′ ≤ ε
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Plots of posterior for µ
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Estimating the error

Can calculate

dTV (πε(µ), π(µ|X̄ = 0)) =
1
2

∫
|πε(µ)− π(µ|X̄ = 0)|dµ

Get

dTV =
cnε2

σ2
+ o(ε2),

where c =
√

2/π exp(−1/2) ≈ 1/2.
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Approximate sufficiency

Recall that S = S(D) is sufficient for θ if

P(D | S, θ) is independent of θ

• If S is sufficient for θ, then f(θ | D) = f(θ | S)

• Typically, S is of smaller dimension that D. Inference
method can be simplified (and sped up), e.g.
rejection method via

f(θ | S) ∝ P(S | θ)π(θ)
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Research problem

Puts a premium on finding decent summary statistics

• Definition of approximate sufficiency?

• A systematic, implementable approach?

• Estimate distance between f(θ | D) and f(θ | S)
given a measure of how far from sufficient S is for θ
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Combine summaries and rejection

Pritchard J et al (1999) Mol Biol Evol, 16, 1791–1798

Choose statistics S = (S1, . . . , Sp) to summarize D

AS1 Generate θ from π(·)

AS2 Simulate D′, calculate s′

AS3 Accept θ if ρ(s′, s) ≤ ε; repeat
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Generalizations

• Using all simulations

Beaumont M, Zhang W& Balding D(2002)
Genetics 162, 2025–2035

Weight all simulated observations using distance
from target

• Approximately sufficient statistics

Joyce P & Marjoram P (2008), SAGMB 7, art
26
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Advantages and disadvantages of ABC

Pros:

• Usually easy to code

• Generates independent observations (can use
embarrassingly parallel computation)

• Can be used to estimate Bayes factors directly

• Usually easy to adapt
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Cons:

• May be hard to anticipate effects of summary
statistics

• For complex probability models, sampling from prior
does not make good use of accepted observations

• Choice of metric matters

25



Approach II: Markov chain Monte
Carlo
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The Hastings Markov chain

M1 Now at θ

M2 Propose move to θ′ according to q(θ → θ′)

M3 Calculate the Hastings ratio

h = min
(

1,
P(D | θ′)π(θ′)q(θ′ → θ)
P(D | θ)π(θ)q(θ → θ′)

)
M4 Accept θ′ with probability h, else return θ
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Basic output analysis

There are more things to check:

• Is the chain ergodic?

• Does it mix well?

• Is the chain stationary?

• Burn in?

• Diagnostics of the run (no free lunches)
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MCMC in evolutionary genetics setting

• Small tweaks in the biology often translate into huge
changes in algorithm

• Long development time

• All the usual problems with convergence

• Almost all the effort goes into evaluation of likelihood
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(Yet) another MCMC approach

Marjoram P et al (2003) PNAS, 100, 15324–15328

MS1 Now at θ

MS2 Propose a move to θ′ according to q(θ → θ′)

MS3 Generate D′ using θ′

MS4 If D′ = D, go to next step, else return θ

MS5 Calculate

h = h(θ, θ′) = min
(

1,
π(θ′)q(θ′ → θ)
π(θ)q(θ → θ′)

)
MS6 Accept θ′ with probability h, else return θ
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Practical version: ABC

Data D, summary statistics S

[MS4′ ] If ρ(D′,D) ≤ ε, go to next step, otherwise return θ

[MS4′′ ] If ρ(S′, S) ≤ ε, go to next step, otherwise return θ

for some suitable metric ρ and approximation level ε

Observations now from f(θ | ρ(D′,D) ≤ ε) or
f(θ | ρ(S′, S) ≤ ε)
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Variations on ABC

• Convergence an issue?

• These methods can often be started at stationarity,
so no burn-in

• If the underlying probability model is complex,
simulating data will not often lead to acceptance.
Thus need update for parts of the probability model
(data augmentation)

• There are versions with varying ε
Bortot P et al (2007) JASA, 104, 84–92

• There are now many hybrid versions of these
approaches (e.g. ABC-within-Gibbs)
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Approach III: Population Monte Carlo
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ABC-PRC & ABC-PMC

Sisson S et al (2007) PNAS, 104, 1760–1765
Beaumont M et al (2009) Biometrika, 96, 983–990

Start with ε1 > ε2 > · · · > εT

1. For iteration 1:

For i = 1, 2, . . . , N ,

- Simulate θ
(1)
i ∼ π(θ) and x ∼ f(x|θ(1)i ) until

ρ(x, y) < ε1

- Set w
(1)
i = 1/N

Take τ2
2 = 2× empirical variance of the θ

(i)
1
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2. For iterations 2 ≤ t ≤ T ,

For i = 1, 2, . . . , N , repeat

- Generate θ∗i from θ
(t−1)
j w.p. w

(t−1)
j

- Generate θ
(t)
i |θ∗i ∼ N(θ∗i , τ

2
t ), and

x ∼ f(x|θ(t)i ) until ρ(x, y) < εt

- w
(t)
i ∝ π(θ

(i)
t )

.P
j w

(t−1)
j φ(σ−1

t {θ
(t)
i − θ

(t−1)
j })

Take τt+1 = 2× weighted variance of the θ
(i)
t
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Inference in an agent based model:
Stem cell biology

[slides in keynote presentation]
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Conclusions

• ABC provides one approach to inference with intractable
likelihoods

• There are others:

– composite likelihood methods

– model simplification

• Historical examples?

• Many theoretical issues to be resolved

• ABC seems a natural method for inference in agent-based
models

• Reviews:
Marjoram P & Tavaré S (2006) Nat Rev Genet, 7,
759–770
Beaumont M(2010) AREES, in press
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It will be maintained that the end of an era has now been
reached, as regards both statistical methods and
computational techniques, and an outline of the way in
which biometric techniques in genetical demography may
be expected to develop will be given. Particular emphasis
will be placed on the need to formulate sound methods of
‘estimation by simulation’ on complex models.

Edwards AWF (1967) Biometrics, 23, 176
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The dangers of ABC H. L. Mencken:

For every complex problem, there is an answer that is
short, simple and wrong

Why use ABC? J. Galsworthy:

Idealism increases in direct proportion to one’s distance
from the problem
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