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Motivation

• Multiple Expert Diagnoses • Amazon Mechanical Turk

1. How should the patients be diagnosed when doctors 
disagree?

2. How do we evaluate the doctors’ diagnoses? 



Model Assumptions

• 1. Multiple yet unreliable annotators.

• 2. Varying performance on types of  data.

– Due to different expertise.

– Due to quality of data.



Typical Classification Problem

Age Temp. Symptoms… Z

Patient 1 1 96 … not sick

Patient 2 50 102 … sick

… …

Patient N 65 95 … not sick

Learning
Algorithm

Prediction, ZInput, X



The Multiple Expert Problem

Age Temp. Symptoms… Ann. Y1 Ann. Y2 Ann. … Ann. YT

Patient 1 1 96 … not sick sick … sick

Patient 2 50 102 … sick sick … sick

… …

Patient N 65 95 … not sick not sick … sick

Learning
Algorithm

Prediction, ZInput, X, Y



Probabilistic Model



Probabilistic Model

Classifier:  Logistic regression model



Probabilistic Model



Probabilistic Model

when annotator’s performance vary with  data



Implementation



Insights on Classification Model

by general learnt classifier by each annotator

by general learnt classifier by each annotator



Missing Annotators



Predicting Ground Truth without 

Observation 



Evaluating Annotators



UCI Data Classification

Data tested: Ionosphere, Cleveland Heart.  

Our method (x)



UCI Data Classification

Data tested: Glass, and Housing.  

Our method (x)



Breast Cancer Detection

75 cases, 8 morphological features, 3 annotators (radiologists)



Cardiac Wall Motion Anomaly Detection

220 cases, 16 LV heart wall segments, 5 annotators (doctors), binary labels (-/+1)

Our method



Conclusions

• We provided a probabilistic model that allows learning 
from multiple annotators whose annotations may be 
noisy;

• Our model takes into account that the quality of 
annotation may vary with data;

• We show that this model can deal with missing 
annotators/data; 

• Our model can also be utilized to evaluate annotators 
even when ground truth is not available; and

• We can also utilize our model to select the most 
trustworthy/accurate annotator for each new instance 
labeling.



Thanks for Listening

Questions?
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