Sufficient Covariates and Linear Propensity Analysis

Hui Guo, Philip Dawid

University of Cambridge

AISTATS, Sardinia, 13 May 2010

イロト イポト イヨト イヨト

(Strongly) Sufficient covariate Reduction of strongly sufficient covariate Normal linear model Discussion

Introduction

- 1. Our interests:
 - Causal effect from observational studies
 - Adjusting for covariates
 - Dimension reduction of covariates

イロト イポト イヨト イヨト

(Strongly) Sufficient covariate Reduction of strongly sufficient covariate Normal linear model Discussion

Introduction

- 1. Our interests:
 - Causal effect from observational studies
 - Adjusting for covariates
 - Dimension reduction of covariates
- 2. Variables
 - T: binary treatment (1: treatment; 0: control)
 - Y: real-valued response
 - X: "covariates" with values in \mathcal{R}^p

- 4 回 ト 4 ヨ ト 4 ヨ ト

(Strongly) Sufficient covariate Reduction of strongly sufficient covariate Normal linear model Discussion

Introduction

Framework: Decision-Theoretic (Dawid 2002):

▶ non-stochastic regime indicator *F*_T:

- $F_T = \emptyset$: observational
- $F_T = 1$: interventional: assigned to treatment
- $F_T = 0$: interventional: assigned to control

イロン イヨン イヨン ・ヨン

(Strongly) Sufficient covariate Reduction of strongly sufficient covariate Normal linear model Discussion

Introduction

Framework: Decision-Theoretic (Dawid 2002):

▶ non-stochastic regime indicator *F*_T:

- $F_T = \emptyset$: observational
- $F_T = 1$: interventional: assigned to treatment
- $F_T = 0$: interventional: assigned to control

average causal effect

$$ACE := \mathsf{E}(Y \mid F_T = 1) - \mathsf{E}(Y \mid F_T = 0),$$

alternatively, we write $ACE = E_1(Y) - E_0(Y)$.

イロト イポト イヨト イヨト

-

Possible properties Interplay between various regimes

 $X \perp \!\!\!\perp F_T$

Possible properties

Property 1:

covariate

Hui Guo, Philip Dawid Sufficient Covariates and Linear Propensity Analysis

・ロト ・ 同ト ・ ヨト ・ ヨト

Possible properties Interplay between various regimes

Possible properties

Property 1:

 $X \bot\!\!\!\perp F_T$

covariate

Property 2:

 $Y \bot\!\!\!\perp F_T \mid (X, T)$

sufficient covariate

・ロン ・回と ・ヨン・

Hui Guo, Philip Dawid Sufficient Covariates and Linear Propensity Analysis

Possible properties

Possible properties Interplay between various regimes

Property 1: $X \perp \!\!\!\perp F_T$ covariate Property 2: $Y \perp \!\!\!\perp F_T \mid (X, T)$ sufficient covariate

Property 3:

$$P_{\emptyset}(T=t\mid X)>0$$

strongly sufficient covariate

・ロト ・同ト ・ヨト ・ヨト 三星

Possible properties Interplay between various regimes

Possible properties

DAG (influence diagram) for sufficient covariate:

イロト イポト イヨト イヨト

Possible properties Interplay between various regimes

Interplay between various regimes

specific causal effect:

$$SCE_X := \mathsf{E}_1(Y \mid X) - \mathsf{E}_0(Y \mid X).$$

イロト イポト イヨト イヨト

Possible properties Interplay between various regimes

Interplay between various regimes

specific causal effect:

$$SCE_X := \mathsf{E}_1(Y \mid X) - \mathsf{E}_0(Y \mid X).$$

▶ Theorem 2 For any covariate X, and in each regime $f = \emptyset, 0, 1$, ACE = $E_f(SCE_X)$.

イロト イポト イヨト イヨト

Possible properties Interplay between various regimes

Interplay between various regimes

specific causal effect:

$$SCE_X := \mathsf{E}_1(Y \mid X) - \mathsf{E}_0(Y \mid X).$$

- ▶ Theorem 2 For any covariate X, and in each regime $f = \emptyset, 0, 1$, ACE = $E_f(SCE_X)$.
- ▶ **Theorem 1** Let X be strongly sufficient. Then for any integrable $Z \leq (Y, X, T)$, and any versions of the conditional expectations, almost surely in any regime,

$$E_t(Z \mid X) = E_{\emptyset}(Z \mid X, T = t), \quad (t = 0, 1).$$

イロト イポト イヨト イヨト

Treatment-sufficient reduction Propensity variable, propensity score

Reduction of strongly sufficient covariate

 Motivation: easier to adjust for a single rather than multi-dimensional variable, e.g. matching, subclassification.

イロト イボト イヨト イヨト

-

Treatment-sufficient reduction Propensity variable, propensity score

Reduction of strongly sufficient covariate

- Motivation: easier to adjust for a single rather than multi-dimensional variable, e.g. matching, subclassification.
- If X is strongly sufficient and V ≤ X, then V is also strongly sufficient as long as

 $Y \bot\!\!\!\perp F_T \mid (V, T).$

イロト イヨト イヨト

Treatment-sufficient reduction Propensity variable, propensity score

Reduction of strongly sufficient covariate

- Motivation: easier to adjust for a single rather than multi-dimensional variable, e.g. matching, subclassification.
- If X is strongly sufficient and V ≤ X, then V is also strongly sufficient as long as

$$Y \bot\!\!\!\perp F_T \mid (V, T).$$

► Theorem 3 Suppose X is strongly sufficient and V ≤ X. Then V is strongly sufficient if either of the following conditions is satisfied:

イロト イボト イヨト イヨト

Treatment-sufficient reduction Propensity variable, propensity score

Reduction of strongly sufficient covariate

(a) Response-sufficient reduction:

$$Y \bot\!\!\!\perp X \mid (V, F_T = t).$$

DAG expression:

< ∃ >

Treatment-sufficient reduction Propensity variable, propensity score

Reduction of strongly sufficient covariate

(b) Treatment-sufficient reduction:

$$T \bot\!\!\!\perp X \mid (V, F_T = \emptyset).$$

DAG expression:

< ∃ >

Treatment-sufficient reduction Propensity variable, propensity score

Treatment-sufficient reduction

- Let family Q = {Q₀, Q₁} consist of the observational distributions for X, given T = 0, 1 resp.,
 - \rightarrow A treatment-sufficient reduction V is a sufficient statistic for Q.

 \rightarrow A minimal treatment-sufficient reduction is a minimal sufficient statistic for Q, equivalent to the likelihood ratio statistic $\Lambda := \frac{q_1(X)}{q_0(X)}$.

イロト イポト イヨト イヨト

Treatment-sufficient reduction Propensity variable, propensity score

Propensity variable, propensity score

- Such minimal treatment-sufficient reduction V is termed a propensity variable (PV).
- ► The propensity score is

$$\Pi:=P_{\emptyset}(T=1\mid X)=rac{\pi\Lambda}{1-\pi+\pi\Lambda},$$
 where $\pi=P_{\emptyset}(T=1).$

イロト イボト イヨト イヨト

Example: simple normal linear model Propensity analysis Simulations

Example: simple normal linear model

▶ The joint distribution of (*T*, *X*, *Y*) is given by:

 $P_{\emptyset}(T=1)=\pi$

$$X \mid (T, F_T = \emptyset) \sim N(\mu_T, \Sigma)$$

 $Y \mid (X, T, F_T) \sim N (d + \delta T + b'X, \phi),$ with $\pi \in (0, 1), \mu_t (p \times 1), \Sigma$ (positive definite), $b (p \times 1)$.

イロト イポト イヨト イヨト

-

Example: simple normal linear model Propensity analysis Simulations

Example: simple normal linear model

• The joint distribution of (T, X, Y) is given by:

 $P_{\emptyset}(T=1)=\pi$

$$X \mid (T, F_T = \emptyset) \sim N(\mu_T, \Sigma)$$

 $Y \mid (X, T, F_T) \sim N (d + \delta T + b'X, \phi),$

with $\pi \in (0,1)$, μ_t ($p \times 1$), Σ (positive definite), b ($p \times 1$).

- ▶ $X | F_T = t$ is taken to be the same as $X | F_T = \emptyset$, a normal mixture.
- ► X is strongly sufficient, we have $ACE = \delta$ which is also true for any regression on a linear sufficient reduction of X.

Example: simple normal linear model Propensity analysis Simulations

Propensity variable vs. covariate X

The log likelihood ratio is

$$\log \Lambda = const. + LD$$

with

$$\mathrm{LD} := (\mu_1 - \mu_0)' \Sigma^{-1} X,$$

where LD is fisher's *linear discriminant* and also a PV in our model.

Theorem 4 The coefficient of T is the same in the linear regressions of Y on (T,LD) as in the linear regression of Y on (T,X).

<ロ> (日) (日) (日) (日) (日)

Example: simple normal linear model Propensity analysis Simulations

Propensity variable vs. covariate X

► Corollary 1 Given data on (Y, T, X) for a sample, Let LD* be the sample linear discriminant. Then the coefficient of T in the sample linear regression of Y on T and LD* is the same as that in the sample linear regression of Y on T and X.

イロト イボト イヨト イヨト

Example: simple normal linear model Propensity analysis Simulations

Propensity variable vs. covariate X

- Corollary 1 Given data on (Y, T, X) for a sample, Let LD* be the sample linear discriminant. Then the coefficient of T in the sample linear regression of Y on T and LD* is the same as that in the sample linear regression of Y on T and X.
- Propensity analysis does not increase precision! Adjusting for LD* rather than for all p predictors makes absolutely no difference to our estimate — thus, to its precision.

イロト イポト イヨト イヨト

Example: simple normal linear model Propensity analysis Simulations

Simulations

▶ setting: $X_1 | T \sim N(0,1), \quad X_2 | T \sim N(T,1)$ ind. $Y | (X,T) \sim N(0.5T + X_1,1)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

Example: simple normal linear model Propensity analysis Simulations

Simulations

- ► setting: $X_1 | T \sim N(0,1), \quad X_2 | T \sim N(T,1)$ ind. $Y | (X,T) \sim N(0.5T + X_1,1)$
- ▶ LP = X_1 ,
 - $PV = LD = X_2, \quad Y \mid (X_2, T) \sim N (0.5T, 2).$

◆□ > ◆□ > ◆臣 > ◆臣 > ―臣 - のへで

Example: simple normal linear model Propensity analysis Simulations

Simulations

- ► setting: $X_1 | T \sim N(0,1), \quad X_2 | T \sim N(T,1)$ ind. $Y | (X,T) \sim N(0.5T + X_1,1)$
- ► LP = X_1 , PV = LD = X_2 , $Y | (X_2, T) \sim N (0.5T, 2)$.
- ▶ four linear regressions:
 M₀: Y on T, X = (X₁, X₂)'
 M₁: Y on T, LP = X₁
 M₂: Y on T, PV = X₂
 M₃: Y on T, PV*.
- All produce unbiased estimator for $\mathrm{ACE}=$ 0.5.

イロト イボト イヨト イヨト 二日

M3: Y on (T, LD*)

Hui Guo, Philip Dawid

Sufficient Covariates and Linear Propensity Analysis

- A propensity variable is identified as a minimal treatment-sufficient reduction.
- ► For simple normal linear model, PV = LD, adjustment for the sample PV* yields the same estimated ACE as for X. It can neither increase nor decrease precision.
- Our investigations add weight to the accruing evidence that propensity analysis has little to contribute to improving the estimation of causal effects.

イロト イボト イヨト イヨト

THANK YOU !