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Introduction

1. Our interests:
◮ Causal effect from observational studies

◮ Adjusting for covariates

◮ Dimension reduction of covariates
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Introduction

1. Our interests:
◮ Causal effect from observational studies

◮ Adjusting for covariates

◮ Dimension reduction of covariates

2. Variables
◮ T : binary treatment (1: treatment; 0: control)

◮ Y : real-valued response

◮ X : “covariates” with values in Rp
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Framework: Decision-Theoretic (Dawid 2002):

◮ non-stochastic regime indicator FT :

FT = ∅: observational

FT = 1: interventional: assigned to treatment

FT = 0: interventional: assigned to control
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Introduction

Framework: Decision-Theoretic (Dawid 2002):

◮ non-stochastic regime indicator FT :

FT = ∅: observational

FT = 1: interventional: assigned to treatment

FT = 0: interventional: assigned to control

◮ average causal effect

ACE := E(Y | FT = 1) − E(Y | FT = 0),

alternatively, we write ACE = E1(Y ) − E0(Y ).
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Property 1:
X⊥⊥FT

covariate
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Possible properties

Property 1:
X⊥⊥FT

covariate

Property 2:
Y⊥⊥FT | (X ,T )

sufficient covariate
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Possible properties

Property 1:
X⊥⊥FT

covariate

Property 2:
Y⊥⊥FT | (X ,T )

sufficient covariate

Property 3:
P∅(T = t | X ) > 0

strongly sufficient covariate
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Possible properties

DAG (influence diagram) for sufficient covariate:

X

FT T Y
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Interplay between various regimes

◮ specific causal effect:

SCEX := E1(Y | X ) − E0(Y | X ).
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Interplay between various regimes

◮ specific causal effect:

SCEX := E1(Y | X ) − E0(Y | X ).

◮ Theorem 2 For any covariate X, and in each regime f = ∅, 0, 1,

ACE = Ef (SCEX ).
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Interplay between various regimes

◮ specific causal effect:

SCEX := E1(Y | X ) − E0(Y | X ).

◮ Theorem 2 For any covariate X, and in each regime f = ∅, 0, 1,

ACE = Ef (SCEX ).

◮ Theorem 1 Let X be strongly sufficient. Then for any integrable

Z � (Y ,X ,T ), and any versions of the conditional expectations,

almost surely in any regime,

Et(Z | X ) = E∅(Z | X ,T = t), (t = 0, 1).
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Reduction of strongly sufficient covariate

◮ Motivation: easier to adjust for a single rather than
multi-dimensional variable, e.g. matching, subclassification.
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Reduction of strongly sufficient covariate

◮ Motivation: easier to adjust for a single rather than
multi-dimensional variable, e.g. matching, subclassification.

◮ If X is strongly sufficient and V � X , then V is also strongly
sufficient as long as

Y⊥⊥FT | (V ,T ).
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Reduction of strongly sufficient covariate

◮ Motivation: easier to adjust for a single rather than
multi-dimensional variable, e.g. matching, subclassification.

◮ If X is strongly sufficient and V � X , then V is also strongly
sufficient as long as

Y⊥⊥FT | (V ,T ).

◮ Theorem 3 Suppose X is strongly sufficient and V � X. Then V

is strongly sufficient if either of the following conditions is satisfied:
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Reduction of strongly sufficient covariate

(a) Response-sufficient reduction:

Y⊥⊥X | (V ,FT = t).

DAG expression:

X

X

VX

FT T Y

V
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Reduction of strongly sufficient covariate

(b) Treatment-sufficient reduction:

T⊥⊥X | (V ,FT = ∅).

DAG expression:

X

V

FT T Y
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Treatment-sufficient reduction

◮ Let family Q = {Q0,Q1} consist of the observational distributions
for X , given T = 0, 1 resp.,

→ A treatment-sufficient reduction V is a sufficient statistic for Q.

→ A minimal treatment-sufficient reduction is a minimal sufficient
statistic for Q, equivalent to the likelihood ratio statistic Λ := q1(X )

q0(X ) .
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Propensity variable, propensity score

◮ Such minimal treatment-sufficient reduction V is termed a
propensity variable (PV).

◮ The propensity score is

Π := P∅(T = 1 | X ) =
πΛ

1 − π + πΛ
,

where π = P∅(T = 1).
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Example: simple normal linear model

◮ The joint distribution of (T ,X ,Y ) is given by:

P∅(T = 1) = π

X | (T ,FT = ∅) ∼ N (µT ,Σ)

Y | (X ,T ,FT ) ∼ N (d + δT + b′X , φ),

with π ∈ (0, 1), µt (p × 1), Σ (positive definite), b (p × 1).
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Example: simple normal linear model

◮ The joint distribution of (T ,X ,Y ) is given by:

P∅(T = 1) = π

X | (T ,FT = ∅) ∼ N (µT ,Σ)

Y | (X ,T ,FT ) ∼ N (d + δT + b′X , φ),

with π ∈ (0, 1), µt (p × 1), Σ (positive definite), b (p × 1).

◮ X | FT = t is taken to be the same as X | FT = ∅, a normal mixture.

◮ X is strongly sufficient, we have ACE = δ which is also true for any
regression on a linear sufficient reduction of X .
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Propensity variable vs. covariate X

◮ The log likelihood ratio is

log Λ = const. + LD

with
LD := (µ1 − µ0)

′Σ−1X ,

where LD is fisher’s linear discriminant and also a PV in our model.

◮ Theorem 4 The coefficient of T is the same in the linear regressions of

Y on (T , LD) as in the linear regression of Y on (T , X ).
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Propensity variable vs. covariate X

◮ Corollary 1 Given data on (Y ,T ,X ) for a sample, Let LD
∗ be

the sample linear discriminant. Then the coefficient of T in the

sample linear regression of Y on T and LD
∗ is the same as that in

the sample linear regression of Y on T and X .
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Propensity variable vs. covariate X

◮ Corollary 1 Given data on (Y ,T ,X ) for a sample, Let LD
∗ be

the sample linear discriminant. Then the coefficient of T in the

sample linear regression of Y on T and LD
∗ is the same as that in

the sample linear regression of Y on T and X .

◮ Propensity analysis does not increase precision! Adjusting for LD
∗

rather than for all p predictors makes absolutely no difference to
our estimate — thus, to its precision.
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Simulations

◮ setting: X1 | T ∼ N (0, 1), X2 | T ∼ N (T , 1) ind.

Y | (X ,T ) ∼ N (0.5T + X1, 1)
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Simulations

◮ setting: X1 | T ∼ N (0, 1), X2 | T ∼ N (T , 1) ind.

Y | (X ,T ) ∼ N (0.5T + X1, 1)

◮ LP = X1,

PV = LD = X2, Y | (X2,T ) ∼ N (0.5T , 2).
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Simulations

◮ setting: X1 | T ∼ N (0, 1), X2 | T ∼ N (T , 1) ind.

Y | (X ,T ) ∼ N (0.5T + X1, 1)

◮ LP = X1,

PV = LD = X2, Y | (X2,T ) ∼ N (0.5T , 2).

◮ four linear regressions:

M0 : Y on T ,X = (X1,X2)
′

M1 : Y on T ,LP = X1 All produce unbiased estimator

M2 : Y on T ,PV = X2 for ACE = 0.5.

M3 : Y on T ,PV
∗.
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M0:  Y on (T, X=(X1, X2)’)
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M3:  Y on (T, LD*)

Estimated coef(T)
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M1:  Y on (T, LP=X1)
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mse =  0.3407

M2:  Y on (T, LD=X2)

Estimated coef(T)
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Linear regression (homoscedasticity) [25 datasets]
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◮ A propensity variable is identified as a minimal treatment-sufficient
reduction.

◮ For simple normal linear model, PV = LD, adjustment for the
sample PV

∗ yields the same estimated ACE as for X . It can neither
increase nor decrease precision.

◮ Our investigations add weight to the accruing evidence that
propensity analysis has little to contribute to improving the
estimation of causal effects.
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THANK YOU !
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