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Nonparametric Regression
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Nonparametric Regression

Covariates X and response Y

X and Y may have different forms (continuous, count, categorical)

Goal: prediction, ie compute E[Y |X = x ]

Parametric regression restricts shape (a straight line, polynomial, etc)

Nonparametric regression tries to fit a function
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Motivation

Nonparametric Regression Goals

Flexible model

Accommodate input/output types

Be successfully applied to data with different characteristics

Theoretical assurances, like asymptotic unbiasedness

Computational tractability
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Dirichlet Process Mixtures of Generalized Linear Models

Idea!
Locally, a complex model can be represented by a simpler model

Dirichlet process mixture models:
Cluster observations probabilistically
Can accommodate many data types

Cluster data so that a GLM fits well in each cluster
Clusters and local GLM parameters are latent variables
Predict mean response by averaging posterior draws
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Dirichlet Process Mixtures of Generalized Linear Models

What am I going to talk about?

Abbreviation: DP-GLM

General regression method for all input types accommodated by DP
and output types accommodated by GLM

Continuous, categorical, count, circular, etc covariates/response

Generalization of existing special case methods
(eg Shahbaba and Neal (2009))

We give conditions for asymptotic unbiasedness
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DP-GLM: Intuition
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DP-GLM: Intuition
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Cluster and fit regression probabilistically.
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DP-GLM: Intuition
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Observe testing data—we want to predict a mean function.
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DP-GLM: Intuition
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Fit testing covariates into clustered model; average to get mean function.
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Review: The Dirichlet Process

Properties of the Dirichlet Process

A distribution over distributions–i.e. a draw from a DP is a random
measure

Random measures from DPs are almost surely discrete
When used as a distribution on hidden parameters, this produces a
clustering effect

Parameterized by base probability measure G0 and scale α

If θ1, . . . , θn ∼ P, P ∼ DP(αG0), then

θn+1|θ1:n ∼
1

α + n

n∑

i=1

δθi +
α

α + n
G0

Use as prior on distribution for hidden parameters θi
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Dirichlet Process Mixtures of Generalized Linear Models

Dirichlet Process Mixtures of Generalized Linear Models (DP-GLM) for
covariates X and response Y :

P ∼ DP(αG0)

θi |P ∼ P

Xi |θi ∼ fx(x |θi ,x)

Yi |θi ,Xi ∼ fy (y |Xi , θi ,y )

Example: Gaussian Model: X , Y ∈ R

P ∼ DP(αG0)

θi = (µi ,x , σi ,x , βi ,0, βi ,1, σi ,y )|P ∼ P

Xi |µi ,x , σi ,x ∼ N(µi ,x , σ
2
i ,x)

Yi |βi ,0, βi ,1, σi ,y ,Xi ∼ N(βi ,0 + βi ,1Xi , σ
2
i ,y )
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DP-GLM: Gaussian Model
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Computational Procedure

Given data D = (Xi , Yi)1:n, we want to compute E[Y |X = x , D]

1) Choose the GLM

2) Choose DP base measure G0

3) Estimate posterior of θ1:n given (Xi ,Yi )1:n
We use Gibbs sampling, Neal (2000) Algorithms 3, 6 or 8

Obtain M i.i.d. samples of θ(m)
1:n from the posterior

4) Compute predicted value E[Y |X = x ,D]:

E[Y |X = x ] = E [E[Y |X = x ,D, θ1:n]]
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Computational Procedure

Computing the prediction E[Y |X = x , D]

Given θ1:n, we can compute expectation:

E[Y |x , θ1:n] =
1

b

n∑

i=1

E [Y |x , θi ] fx(x |θi ) +
α

b

∫
E [Y |x , θ] fx(x |θ)G0(dθ),

b = α

∫
fx(x |θ)G0(dθ) +

n∑

i=1

fx(x |θi ).

Get M observations of θ1:n

But θ1:n is unknown, so we average over samples (θ(m)
1:n )Mm=1

E [Y |X = x ,D] ≈
M∑

m=1

E
[
Y |X = x ,D, θ(m)

]
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Theoretical Properties of the DP-GLM

Asymptotic Unbiasedness

Want our estimate of the mean function to converge to the true
mean function as we get more observations

This is not a given with Dirichlet process priors (Diaconis and
Freedman, 1986)

Asymptotic unbiasedness depends on:
True distribution of X ,Y , denoted f0(x , y)
Model (i.e. DP-GLM parametric functions)
Base measure G0
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Theoretical Properties of the DP-GLM

Theorem

The DP-GLM is asymptotically unbiased in a compact set of covariates C
if:

(i) (K-L Condition) for every δ > 0, prior puts positive measure on

{
f :

∫
f0(x , y) log

f0(x , y)

f (x , y)
dxdy < δ,

∫
f0(x , y)

(
log

f0(x , y)

f (x , y)

)2

dxdy < δ

}
,

(ii)
∫

|y |2f0(y |x)dy <∞ for every x ∈ C, and

(iii) there exists an ε > 0 such that for every x ∈ C,

∫ ∫
|y |1+εfy (y |x , θ)G0(dθ) <∞.
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Theoretical Properties of the DP-GLM

Satisfying Main Theorem

K-L condition is hard to show.

When is it satisfied?
Gaussian Model: conjugate base measures, shown in slide.
Continuous and categorical covariates/response can be used as well
with conjugate base measures.

The rest is an open question.
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Empirical Analysis
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DP-GLM Comparison: DP regression without GLM

Comparison over Dimensions
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DP-GLM Comparison: Heteroscedastic Data

CMB Dataset
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Cosmic Microwave Background (CMB) Bennett et al. (2003)

Power spectrum vs. multipole moments.

One continuous covariate, continuous response.

Heteroscedastic noise.

Concrete Compressive Strength (CCS) Yeh (1998)

Concrete compressive strength against composition covariates
(cement, water, fly ash, etc).

Eight continuous covariates, one continuous response.

Low noise, moderate dimensionality.

Solar Flare (Solar) Bradshaw (1989)

Number of solar flares vs. sun features (solar spots, etc).

Eleven categorical covariates, count response.

Moderate dimensionality, atypical covariate/response types.
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Competitors

Competitors

Least squares linear regression (for CMB, CCS)

Tree regression (CART), treed linear models

Gaussian process prior regression, treed Gaussian processes

Dirichlet process regression without GLM

Poisson regression (for Solar)
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Numerical Results: Cosmic Microwave Background

Covariates:

1 continuous

Response:

continuous

Other:

heteroscedastic
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Numerical Results: Concrete Compressive Strength

Covariates:

8 continuous

Response:

continuous

CCS Dataset
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Numerical Results: Solar Flare

Covariates:

11 categorical

Response:

count
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Summary

DP-GLM Issues/Future Work:

Automate choice of G0, hyperparameters

Investigate balance between modeling covariates and response

DP-GLM Pros:
Flexible nonparametric regression method; can be used in many
settings

Generally competitive with state of the art regression methods

Generally stable outputs

Can accommodate heteroscedasticity, overdispersion in a natural
manner
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Thank You!

Lauren Hannah
lhannah@princeton.edu
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