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Motivation

We want to construct a classifier that has good performance where
the predictor variables have a known network structure.

For Example: ’ Response Variable
@ strongly classifies ' P
Oo—o—(%)
@ have edges with @ and are also Predictor variables

likely to have a strong relationship with ‘ known network

structure

o
L 4
&

organized into a
%)

The relationship between . and @ IS
unclear and could be obscured by noise.

)
()
(9

« [Feature selection or regularized methods (lasso etc.) focus on sparsity
and may just pick @& and some of its neighbors (% .

- This could lead to very sparse graph features being used to
represent the entire network.

Can we use the known network structure to resolve the relationship
between (x)and @ and improve classification performance?

20§22
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Network Classifiers and Logistic Regression

* The link between network classifiers and logistic regression is well
established (Friedman, 1997)

- Each predictor variable is a node: By xy

- Each edge is an interaction effect: By, XXy

- { are the logistic regression coefficients

« All nodes have an edge with a binary response: y={—1,1]

* The probability for classifying a binary response is:

eF'(X)

1+ ef(X)
- Where F(X) is a linear combination of node and edge terms:

P(y=1X) =

F(X)ZZ BrTr + Z Bkm Tk Tm
k mene(xry)

-——_—_J'_
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Logistic Regression and Exponential Loss

« Optimizing the performance of a logistic regression can be seen as
maximizing an exponential potential function.

e" %) Py=1X) F(X)
e ST PG 2 TXY

* Increasing F(X) in the direction of y, will optimize classification
performance.

P(y=1]X) =

- Equivalently, as 4 ={—1,11 we could minimize the exponential loss:
min {e_yF(X)}

* This link between minimizing the exponential loss and maximizing the
performance of a logistic regression has been observed with boosted
learning (Friedman et al. , 2000).

-——_—_-J'_



Network Classifier as an
Ensemble of Factors

Consider a factorization of our network classifier to minimize the
exponential loss,

e—yF(X) ks He_y(kak+):mene(xk) Bkmxkxm) 2 He—yfk(xk,ne(xk),ﬁk)
k

k
» The exponential loss is minimized when ﬂ( IS maximized in the direction

of Gy = s 49
« Each ﬂ( can be interpreted an individual classifier.

 Optimizing a linear combination of classifiers to minimize an exponential
loss is similar to boosting.

— Except the structure of all ensemble members is specified in
advancke and represents local potential functions of a known
network.

Can we use the known network structure to estimate each classifier
{:k which minimizes the exponential loss over the whole network?

60f.22
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Boosting

- Boosting constructs a linear combination Fm (X) through a stage-

wise addition of individual classifiers  , (X):
M
Fpy(X) = Z Con fon (X)
m=1
where each new classifier fm (X)) found through minimization of an
exponential loss:

argmin {e)’(le(XHcmfm(X))} —  argmin {Wmleycmfm(X)}

Cm Cm
- The weights at each iteration w,— are the errors of the current
ensemble Fy— (X).

- The boosted coefficients c,, weight the importance of each newly
added model t,,(X) to the entire ensemble:

1 1 —en

‘-_——_lIJ .
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Network Inference

Message Passing and Expectation Propagation are network inference
algorithms that work on factor graphs:

« Starting from a factorization of pairwise loss functions:

bl A A X+ PipXeX; Outside network
fie = fueOxe,x;) = e (Brexe+Bixxicxi)
« The contribution of %, to the whole network is:

MWZIIM

 The entire network can be re-written as:

ZHMMZHIIH,

k icne(x)

From this factorization we can directly use Expectation Propagation
or Message Passing algorithms to optimize the performance of our
network classifier.




Expectation Propagation (EP)

Expectation Propagation (EP) minimizes the Kullback-Leibler divergence
of a factorized distribution by iteratively refining the estimates of each
factor (Minka, 2001).

Given a factorized distribution: P(Xl ge e gxm) T ka
k

Step 1: Remove the current estimate of fk

pX) e = p(X)/ fi

Step 2: Re-estimate t v given the the current
estimates of all other factors

fr = max {ﬁ(X)/fkfk}

Step 3: Insert the new fk back into the full
distribution

p(X) = Zp(X) i £,

10 of 22
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EP on a Network Classifier

If we consider the factorized form of our network classifier:

p(X) = H H fix where fy = e YPxHPixixc)
k icne(xy)
We can define an EP algorithm to estimate the classifier parameters 3

Step 1: Remove the current estimate of f ik

]_"j(X)/fik oc o Y(FX)—fir)

Step 2 is the minimization
Step 2: Re-estimate f i given the current o t?? vae'?;?tzr:lsl I;)hses o
estimates of all other factors g j <
@ exponential loss of all
ffk i B {ﬁ(X)/f‘"lé}f'*‘E‘} other factors
ik Step 2 is analogous to a
Step 3: Insert the new t, back into the full Boosted Addition
distribution of iv to the entire
A ~ /f : —yf-, network classifier
P(X) o p(X ) Jike ik

———————————————————————————
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Boosted Expectation Propagation (BEP)

Defines a Boosted update as the optimization step within an

Expectation Propagation algorithm:

Step 1: Remove the current estimate of f ik

ﬁ(X)/ﬁk o (F -

| ik ) The boosted update
introduces a new

parameter ¢, for

Step 2: Re-estimate s ik given the current
exponential loss from all other faCtOI‘S{
S - — C. L .
fit =min{wize JEE*

Step 3: Insert the new fj, back into the full
distribution

each f;, which

weights the
Importance of each
factor to the network
classifier.

P(X) o< wixe




Message Passing (MP)

Message Passing algorithms assume that all network information needed
to estimate the distribution of node is contained within its immediate
neighbors. - We use the max-product algorithm (Kschischang et al., 2001)

Given a factor graph: (le Xm) o ka

On a factor graph the max-product algorithm defines 2 type of messages:
1) From a node ¥, to a factor ﬂk:

i | Ha;— fir
Hiips=fin s H Hfji—x; oulside S\ o - ®

network

jENne(x;) 13 F——

2) From a factor ﬂk to a node xy:
f

Pfip—m), = MAX S ik H Pa;—Fir ¢

jene(fix)
J7k )

13 of 22




MP on a Network Classifier

If we consider the factorized form of our network classifier:

p(X) T H H ﬁk where ffk == e_}?(ﬁf'xf—l_ﬁikxﬁk)
k icne(xy)

We can define a max-product algorithm to estimate the classifier
parameters B

I
1) From a node ¥, to a factor ﬂk:

2) is the minimization
g the exponential loss of
Hzi—fir = H Hfji—as ., weighted by the
367?6(33@) exponential loss of the
JFk

neighboring nodes
2) From a factor ﬂk to a node x:

{

Step 2 analogous to a
Boosted Addition

of t, to the local
[ofip—x, = TN S I H Pz ;— fur, ¢

network structure.
jene(fir)

\ J#k J

14 of 22
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Boosted Message Passing (BMP)

Defines a Boosted update as the maximization step within an loopy

max-product Message Passing algorithm.

The boosted update

1) From a node x; to a factor fi: Introduces a new
parameter cj for

each f;, which

weights the
importance of each
factor to the network
classifier.

K i s

Hfix—zr = N 4 e_yCikfik H Hz;— fix >
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BEP vs BMP

BEP updates each factor based on the error of the entire network:

O ® O
23 The network
CO—C0—® ® ® CO—Co—®) is single
+ + ensemble of
@ @ @ factors
base network remove each node re-estimate & re-insert

BMP updates each factor based only on the error within the local network:

—

®
Separate
ensembles
O—® i
are built 1
along each
) edge in both
directions
base network 14 iteration 2" jteration
(estimate and propagate) (estimate and propagate) J
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Convergence

Both MP and EP seek to minimize the Kullback-Leibler divergence. For
classification we seek to minimize the Conditional Kullback-Leibler
divergence (CKL):

P(Xly)

Q(Xy)

CKL(P||Q) =) P(X]y)log
y,X
given, P(X|y) = Z( He vfe and Q(X|y) = qu

Boosting only
increases v linearly,

Then the CKL is: |[C KL = —log Z(X) B ZCUF(X)P(XW) R(Xly) < 4

y,X and Z (X) decreases
exponentially.

195
|
195
|

190
|
190
|

CKL

185
|
530 528 526 524 522 520

180
|

180
|

Marginal Exponential Loss
Network Exponential Loss

175

20 40 60 80 100 o 20 40 60 80 100 o 20 40 60 80
lteration lteration lteration




Simulation Experiments

We assess the performance of BEP and BMP to classify a 2D grid
structured known exponentially distributed network (4 = 1):

18 of 22

p(X) = H€9i$i+zj€n€($i) 0550, 1 Si=h 1)
7: 0; € [—1, 1]
embedded within a uniform random noise distribution (4 = —1).
We define a network strength: o €:0:5;0.75;:1 .+, 8]

to scale the network coefficients: 97; — aé’,,;

We compare BEP and BMP on 3 grid sizes (8x8, 10x10, 12x12) with
« Standard logistic regression (LNC)

* Logistic Regression with RIDGE, LASSO and ELASTIC net penalties.

« Simple aggregation over all network factors (FNC)

Using 5x5 fold cross-validation and the area under a ROC curve (AUC). |




2D Grid Simulation Results

8x8 Grid
e
—e— |NC
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c 7| [—e— BMP
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 BMP performs best

Mean AUC
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12x12 Grid
—o— |NC
—— FNC
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—e— BMP
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 BEP performance is equivalent to penalized approaches

* As network strength increases all methods will perform around the

same.

19%0£.22

-——_—_-J'_



Gene Network Example

KEGG yeast carbohydrate
metabolism network

203 genes & 1773 interactions

Classify “heat shock” specific
response from other
environmental stresses using
the benchmark Gasch
microarray data (Gasch et al.,
2000).

Model AUC
RIDGE  0.86 £ 0.028
LASSO 0.865 £ 0.022
ENET 0.88 +0.021
BEP 0.87 £ 0.022
BMP 0.94 + 0.013

LASSO

Full
Network

20022

ENET

BEP

BMP




Summary

We exploit the similarity between logistic regression, boosting
and message passing algorithms and propose two novel
network classifiers — BEP and BMP.

BMP is shown to outperform commonly used penalized
approaches and BEP shows equivalent performance.

The results highlight the advantage of explicitly using the
known network structure in constructing a classifier.

BEP and BMP are flexible as they work on a factor graph and
can be extended to use topological features of biological
networks such as reactions, pathways or GO function
information.

21022
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