Factored 3-Way Restricted Boltzmann Machines for Modeling Natural Images

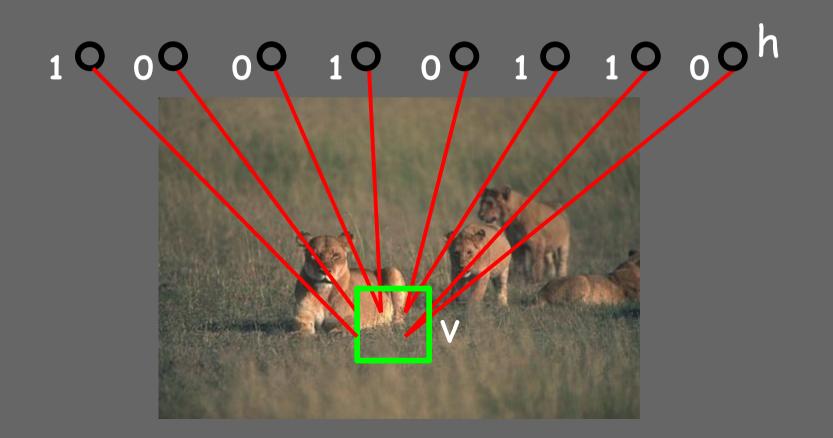
Marc'Aurelio Ranzato, Alex Krizhevsky and Geoff Hinton Dept. of Computer Science – University of Toronto

Marc'Aurelio Ranzato www.cs.toronto.edu/~ranzato

AISTATS - 14 May 2010

Want to model natural images by using a generative model p(image v; W)

Want to use the model to produce representations p(image v, hidden units h; W)



Goal: define p(v, h)

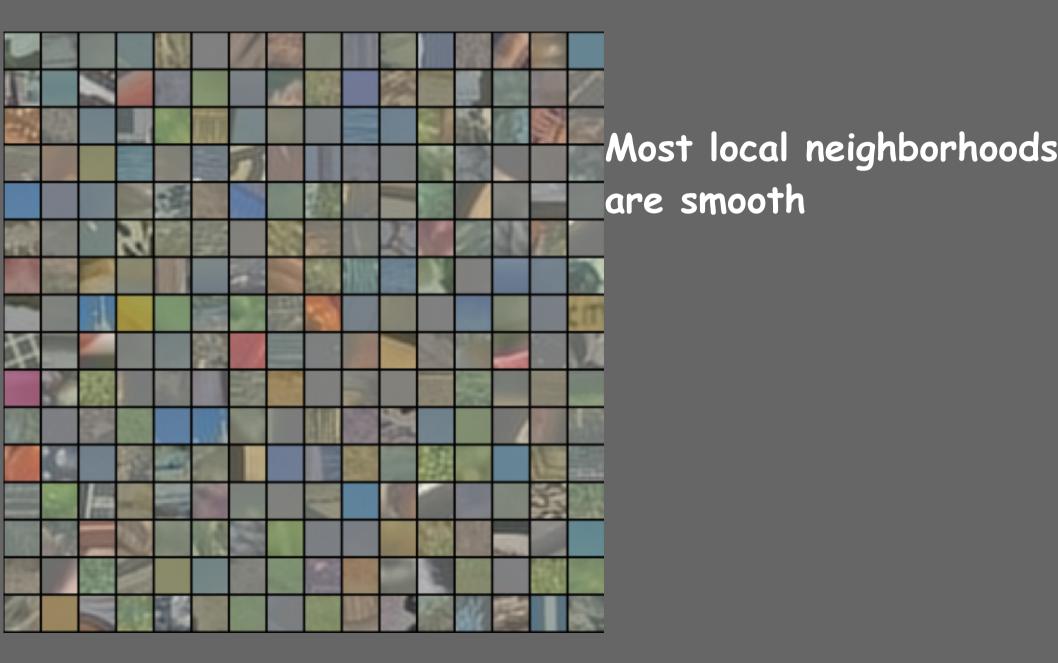
Q.: What is the key property of natural images?

Goal: define p(v, h)

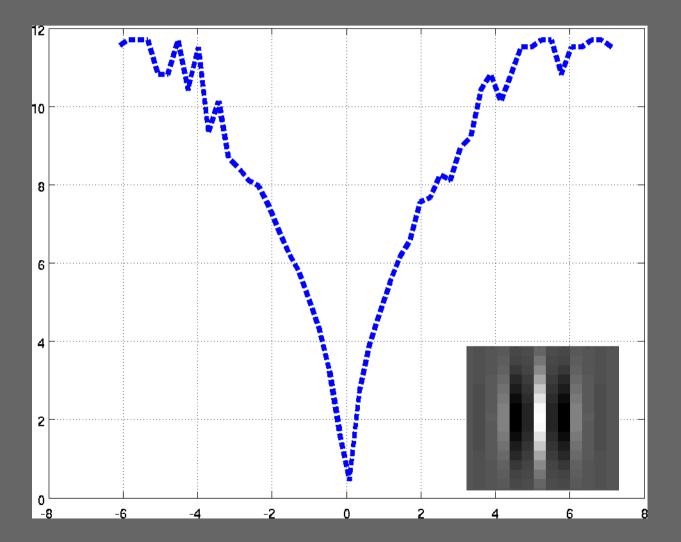
Q.: What is the key property of natural images?A.: smoothness

$v_1 v_2 v_3$ **O O O**

Most of the times, the value of one pixel can be well predicted from its neighbors

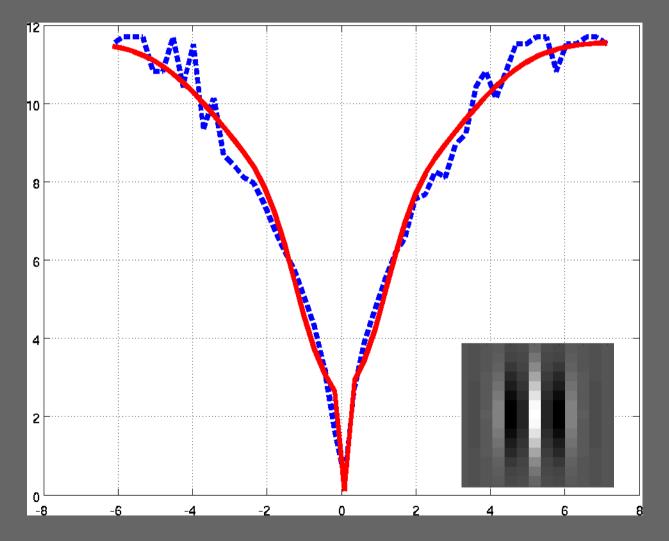


- log(empirical p.d.f. of filter response))



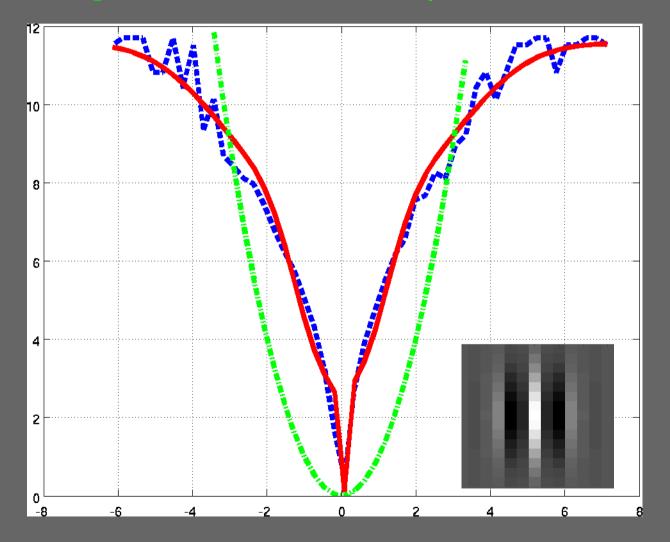
Finding an edge at this location and orientation is rare

- log(empirical p.d.f. of filter response))
- log(fit of model p.d.f. to filter response))



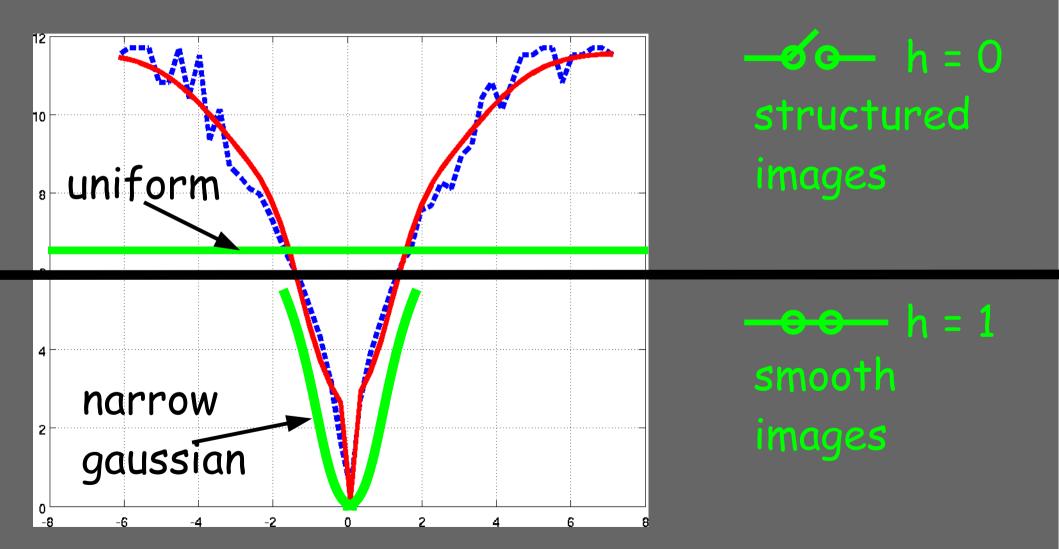
Finding an edge at this location and orientation is rare

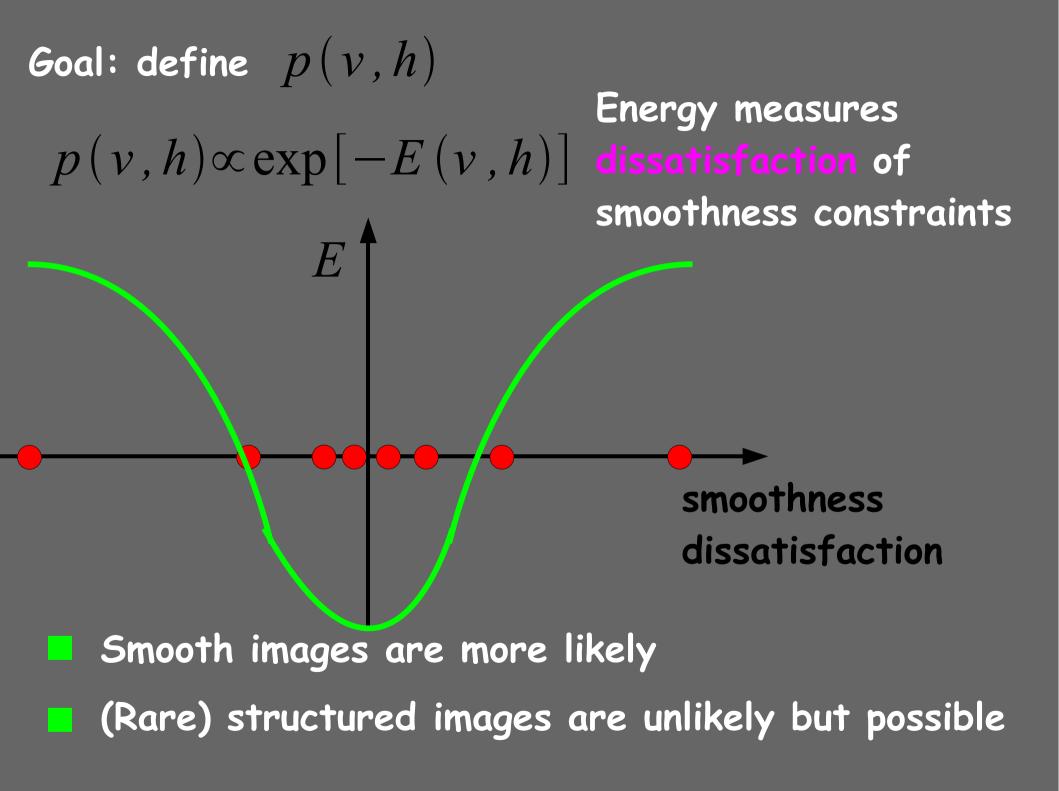
- log(empirical p.d.f. of filter response))
- log(fit of model p.d.f. to filter response))
- log(fit of Gaussian p.d.f. to filter response))

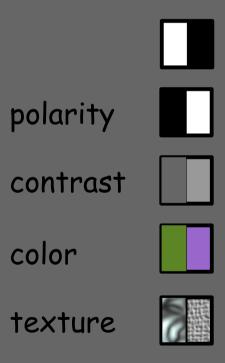


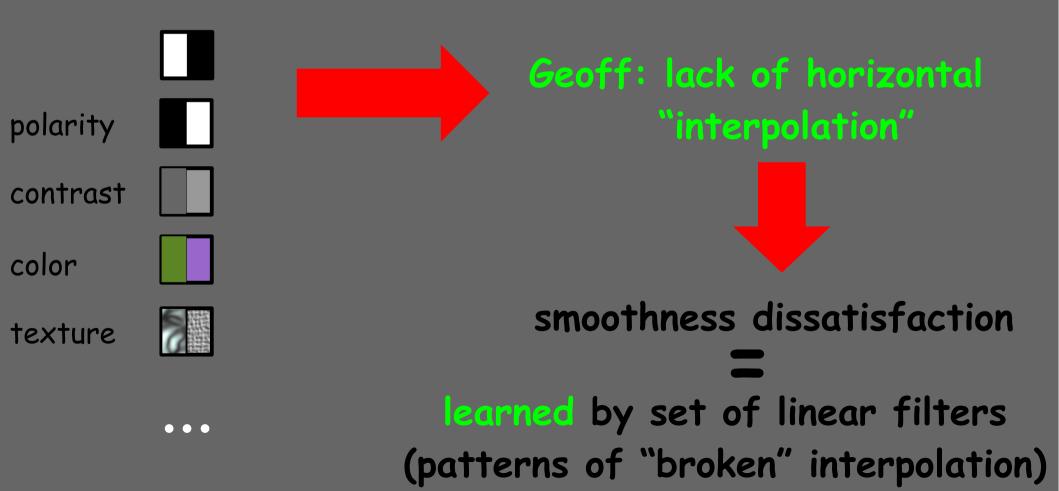
Finding an edge at this location and orientation is rare

KEY IDEA: use "<u>switch</u>" hidden variable







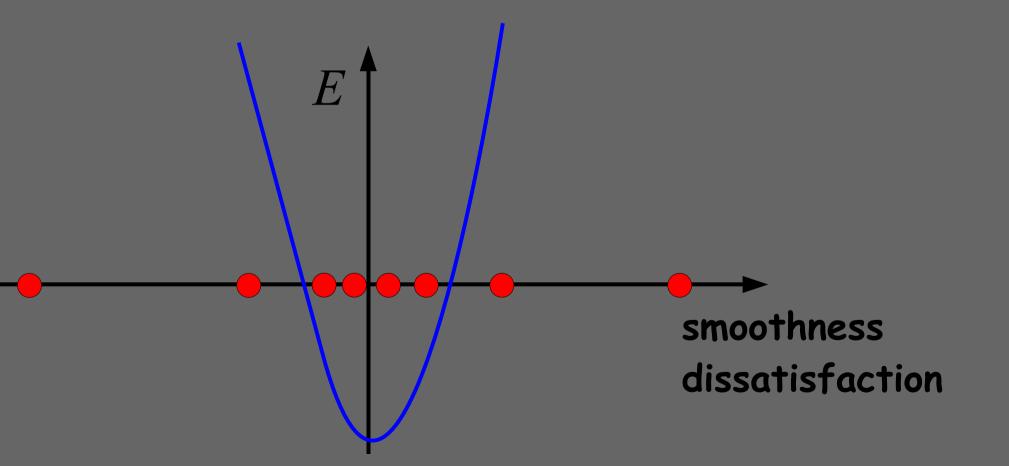


$E = \sum_{i}$ smoothness_dissatisfaction $\begin{bmatrix} i \\ i \end{bmatrix} - b_{i}$

smoothness_dissatisfaction $_{i} = W_{i}v$

$E = \sum_{i}$ smoothness_dissatisfaction $_{i}^{2} - b_{i}$

smoothness_dissatisfaction $_{i} = W_{i}v$



$E = \sum_{i} h_{i}$ smoothness_dissatisfaction $_{i}^{2} - h_{i} b_{i}$

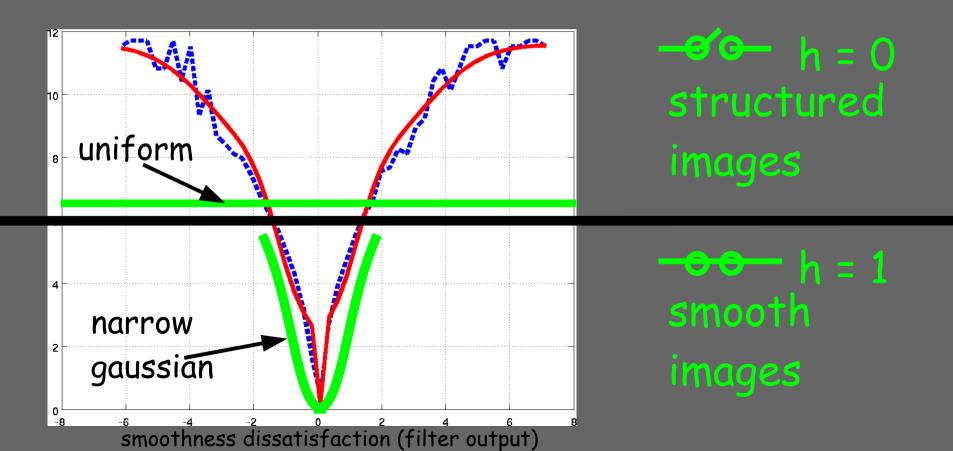
smoothness_dissatisfaction $_{i} = W_{i}v$

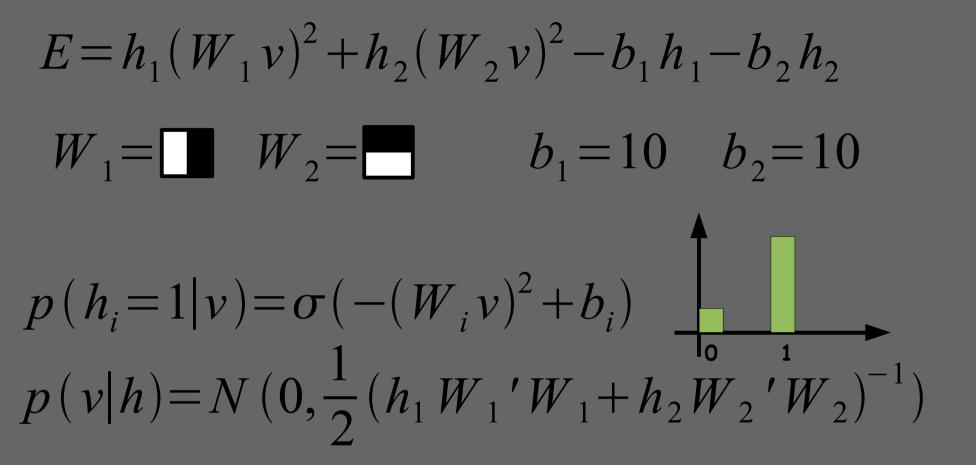
 $h_i \in \{0, \Omega\}$ introduce hiddens to allow violations

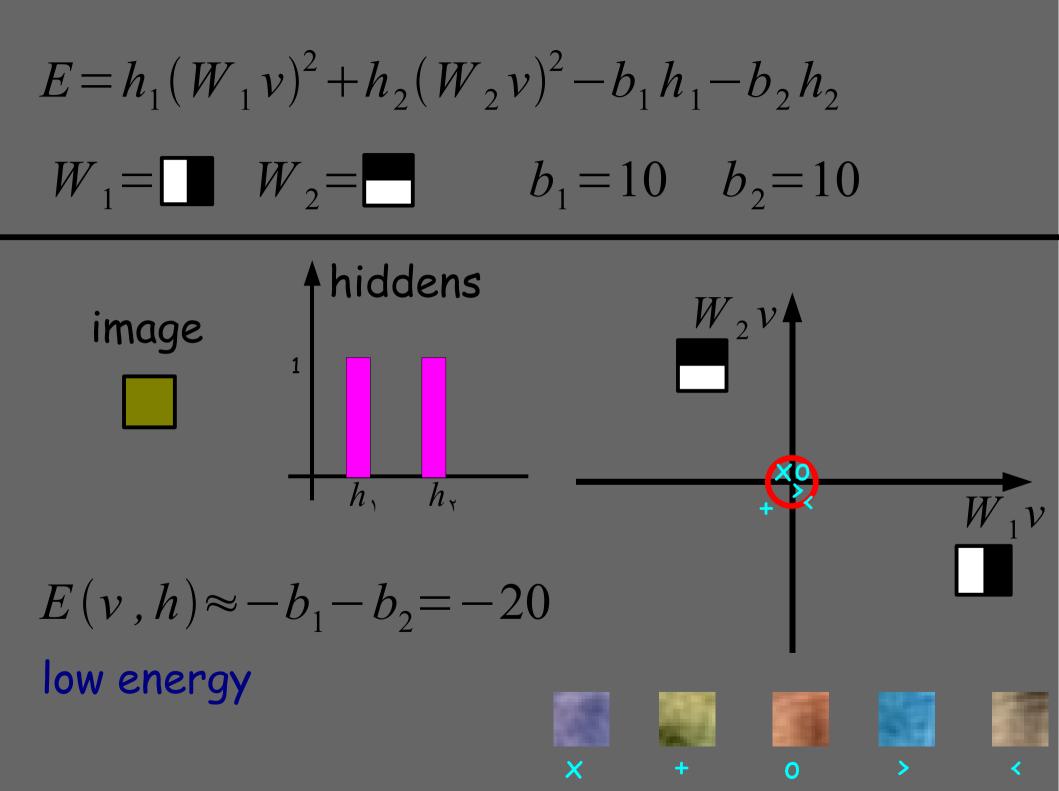
$$E = \sum_{i} h_{i}$$
 smoothness_dissatisfaction $_{i}^{2} - h_{i} b_{i}$

smoothness_dissatisfaction $_{i} = W_{i}v$

 $h_i \in \{0,1\}$ introduce hiddens to allow violations

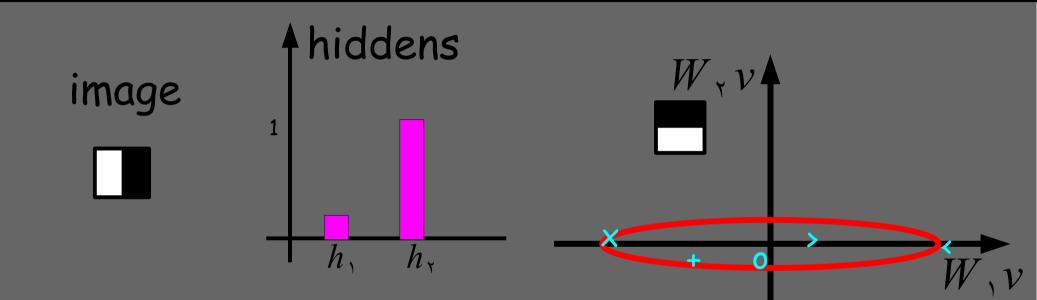






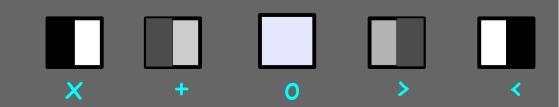
$$E = h_{,}(W,v)^{'} + h_{,}(W,v)^{'} - b_{,}h_{,} - b_{,}h_{,}$$

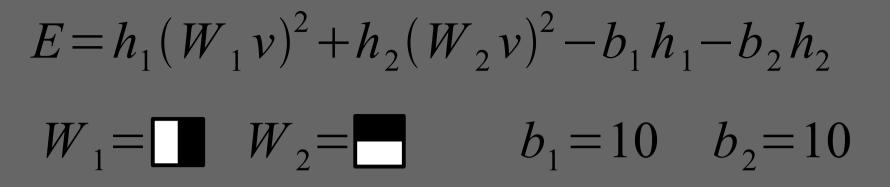
 $W_{\gamma} = \begin{bmatrix} W_{\gamma} = \end{bmatrix} \quad b_{\gamma} = \because \quad b_{\gamma} = \lor$



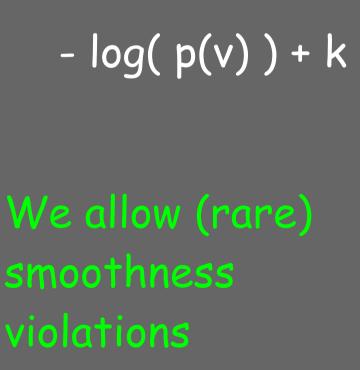
$$E(v,h) \approx -b_{\tau} = -1$$

higher energy $(h_1 \text{ gave discount!})$





Binary hiddens can be marginalized out exactly

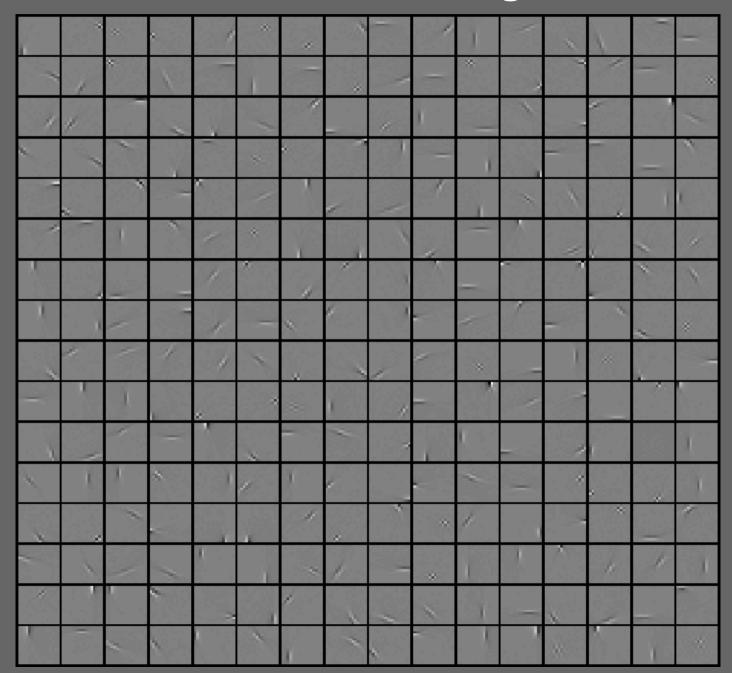


$E = \frac{1}{2} \sum_{k} \sum_{f} h_{k} P_{fk} (W_{f} v)^{2} - b_{k} h_{k}$

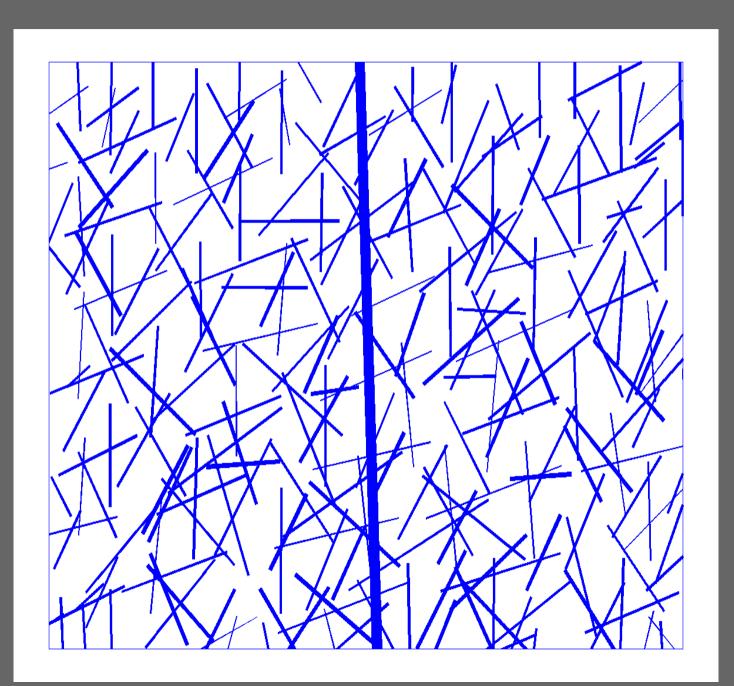
Learning: $\{W, P, b\}$

- approximate maximum likelihood
 - Contrastive Divergence
 - Hybrid Monte Carlo

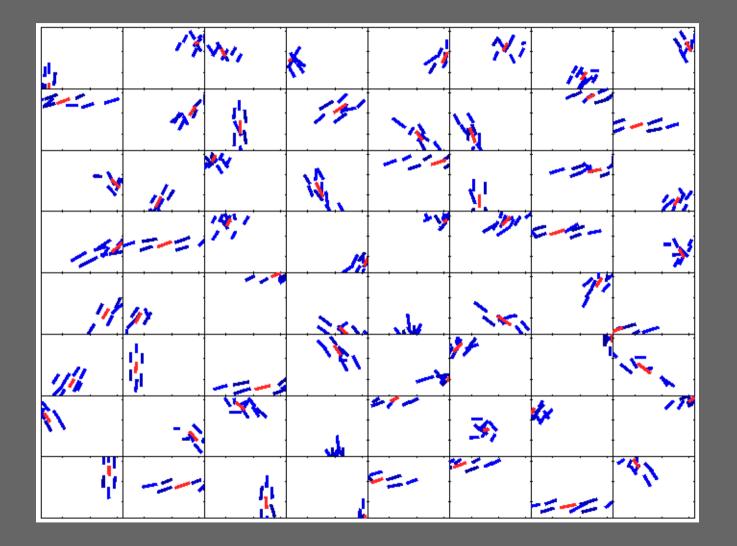
Learned filters (directions of smoothness dissatisfaction) on natural images



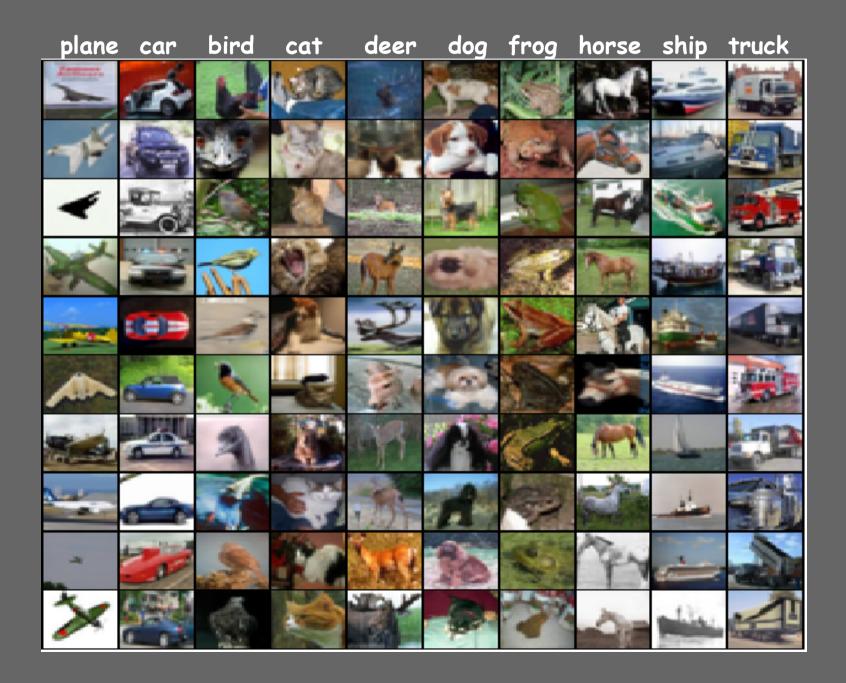
Learned filters: Gabor fit



Learned filters: grouping



RECOGNITION: CIFAR 10 dataset



RECOGNITION: CIFAR 10 dataset

	Accuracy
<mark>3way RBM - DBN</mark> input -> 9800 - 4096	64.7%
GRBM - DBN* input - 10000 - 10000	56.6%
<mark>3way RBM - DBN</mark> input -> 9800 - 4096 - 384	58.7%
GIST input - 384	54.7%

* from Krizhevsky 2009

Conclusions

Model of natural images producing binary features
Invariance or robustness to distortions
Good for recognition
Probabilistic model of simple-complex cell model
Easy to integrate with DBN's

Conclusions

Model of natural images producing binary features
Invariance or robustness to distortions
Good for recognition
Probabilistic model of simple-complex cell model
Easy to integrate with DBN's

Code and more recent developments available at: http://www.cs.toronto.edu/~ranzato

