Fluid Dynamics Models for Low Rank Discriminant Analysis

Yung-Kyun Noh Byoung-Tak Zhang Daniel D. Lee

Overview

 Dimensionality Reduction Problem for Classification – Bhattacharyya Analysis

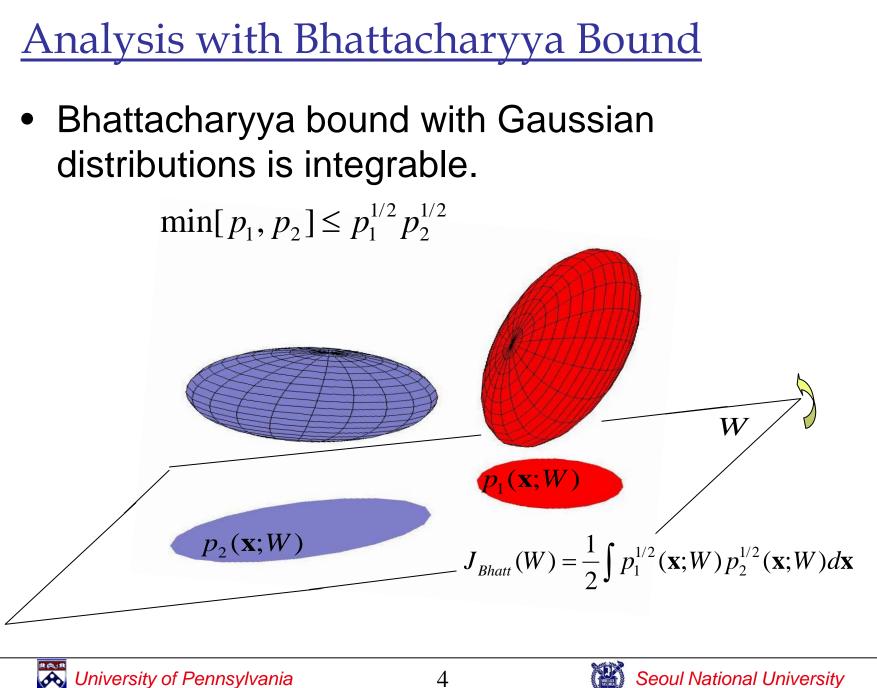
 Physics Analogy - <u>Force Field in Fluid</u> and Motion for Class Separation

Discrimination of Gaussian Processes

2

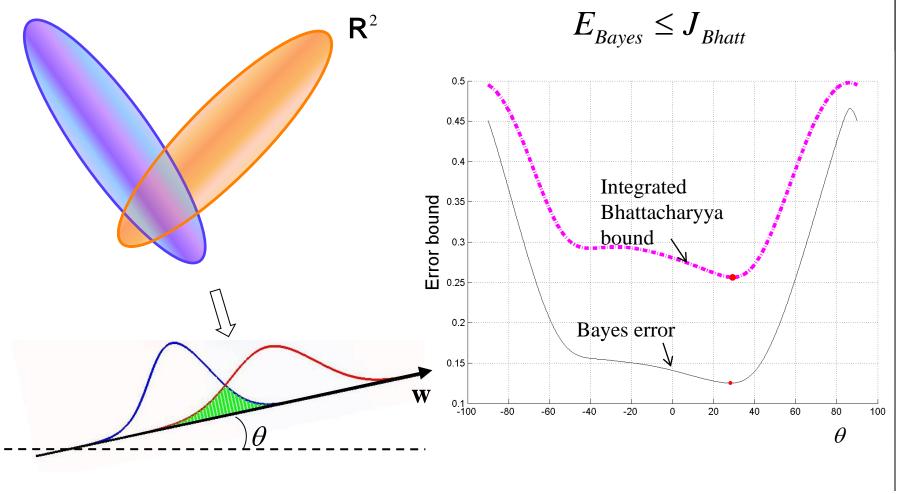
Discriminant Analysis

Maximize class separation for classification. $p_1(\mathbf{x})$ $p_2(\mathbf{x})$ Optimal subspace W $W^* = \arg\min E_{Bayes}(W)$ W W^{*} $p_1(\mathbf{x})$ **Objective function** $E_{Bayes} = \frac{1}{2} \int \min[p_1(\mathbf{x}), p_2(\mathbf{x})] d\mathbf{x}$ $p_2(\mathbf{x})$



Characteristic 1:

• Non-convex Function with Global Minimum Near Bayes Optimal.



Characteristic 2:

• Optimizing Integrated Bhattacharrya Bound.

$$-\ln\left[2J_{Bhatt}(W)\right] = J_1(W) + J_2(W) \qquad [Fukunaga 1990]$$

$$J_{1}(W) = \frac{1}{8}Tr\left[\left(\frac{W^{T}\Sigma_{1}W + W^{T}\Sigma_{2}W}{2}\right)^{-1}W^{T}(\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{T}W\right]$$

$$\mathcal{\mu}_{i}: \text{ mean}$$

$$\Sigma_{i}: \text{ Cov.}$$

$$\Sigma_{i}: \text{ Cov.}$$

$$J_{2}(W) = \frac{1}{2}\ln\left(\frac{W^{T}\Sigma_{1}W + W^{T}\Sigma_{2}W}{2}\right)/|W^{T}\Sigma_{1}W|^{1/2}|W^{T}\Sigma_{2}W|^{1/2}$$

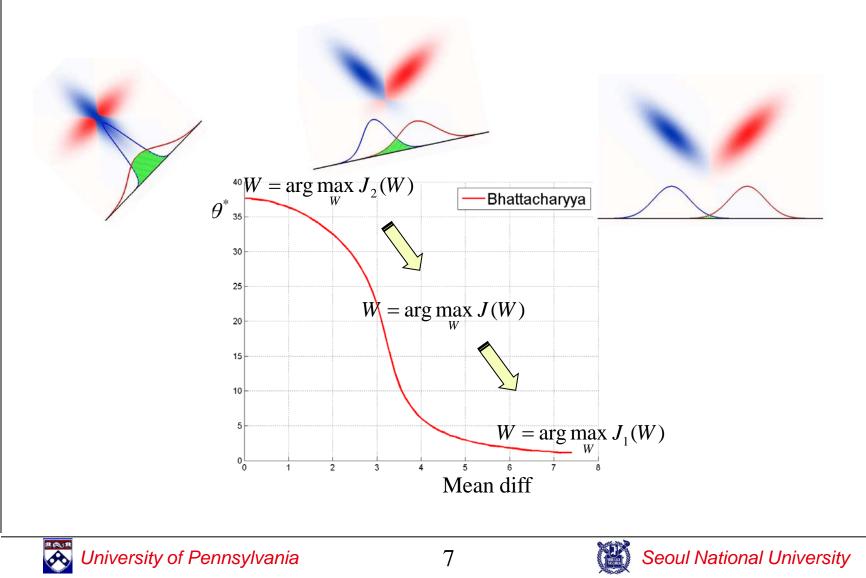
$$Maximizing \text{ covariance difference}$$

$$J_{2}(W) \text{ dominent}$$

Seoul National University

Characteristic 3:

• Transition of the Optimal Direction.



Optimizing Bhattacharrya Bound

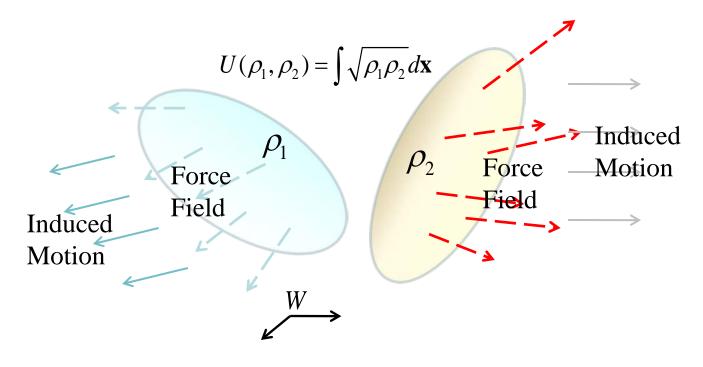
- A Good Approximation of the Bayes Optimumal Subspace
- Analytically Integrable for Gaussians
- Non-Convex, Many Local Minima
- *W'* Matrix Cannot be Optimized by Optimizing Basis Vectors. (Deflation Cannot be Applied.)

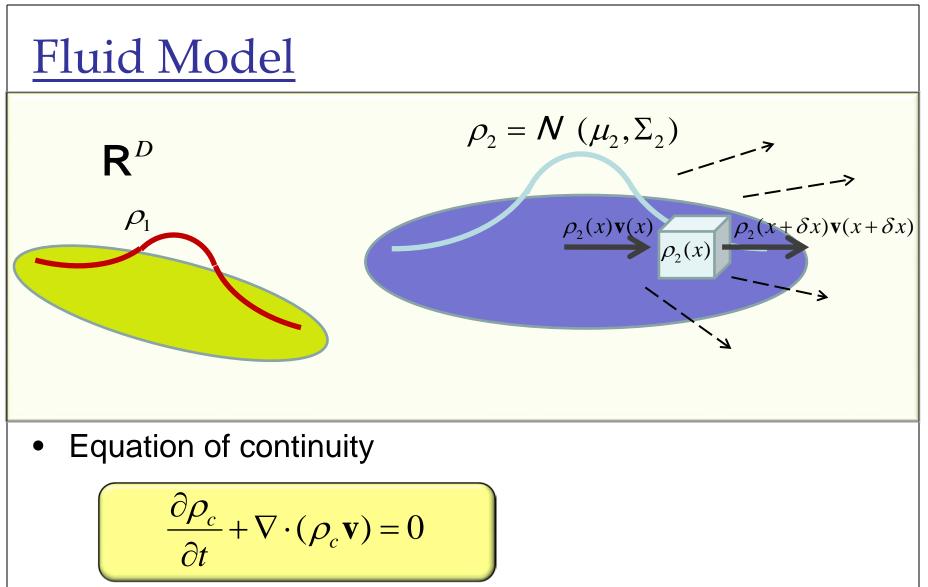
How to address these problems?

Fluid Dynamics Model

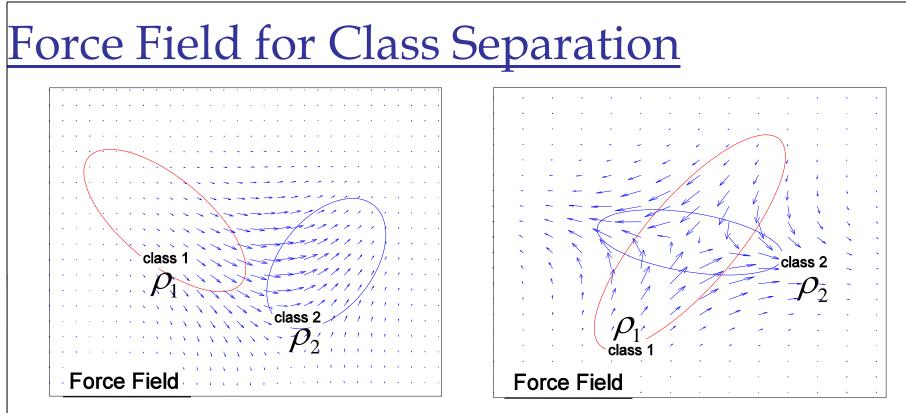
<u>Physics-Based Model for Bhattacharrya</u> <u>Optimization</u>

- Bhattacharyya potential over high dimensional distributions to reduce the overlap
 - Generate the motion
 - Motion & Low dimensional space





Conservation of mass



Potential to reduce interaction

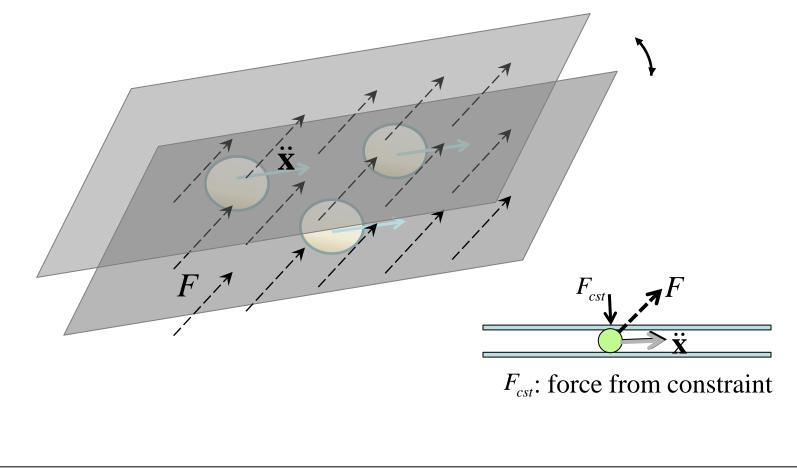
$$J(\rho_1, \rho_2) = \int \sqrt{\rho_1 \rho_2} d\mathbf{x} \quad \leftarrow \text{Bhatttacharyya bound}$$

– Decrease of potential by movement of ρ_2

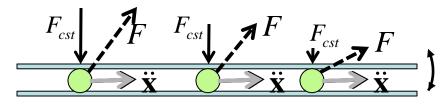
$$F_{1\to 2}(\mathbf{x}) = -\frac{1}{2}\rho_2 \nabla \sqrt{\frac{\rho_1}{\rho_2}}$$

Constrained Fluid Model

• Acceleration is optimized under force field and given constraint.

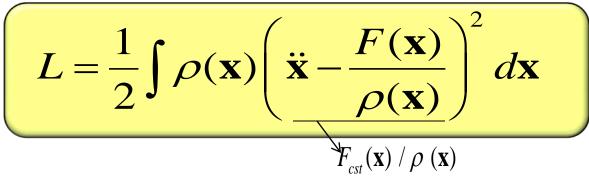


Gauss Principle of Least Constraint

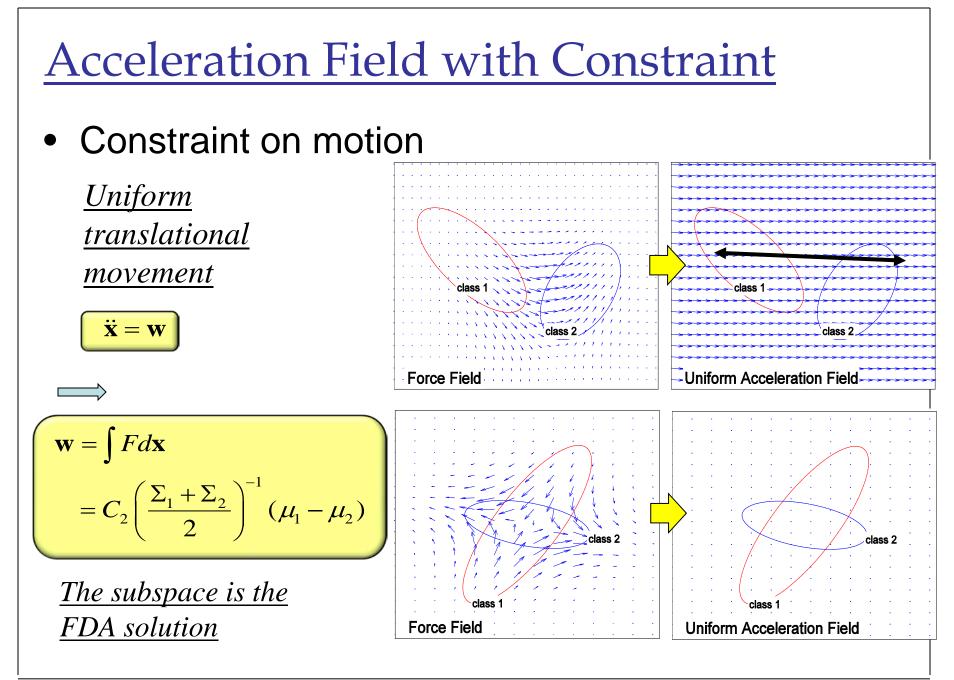


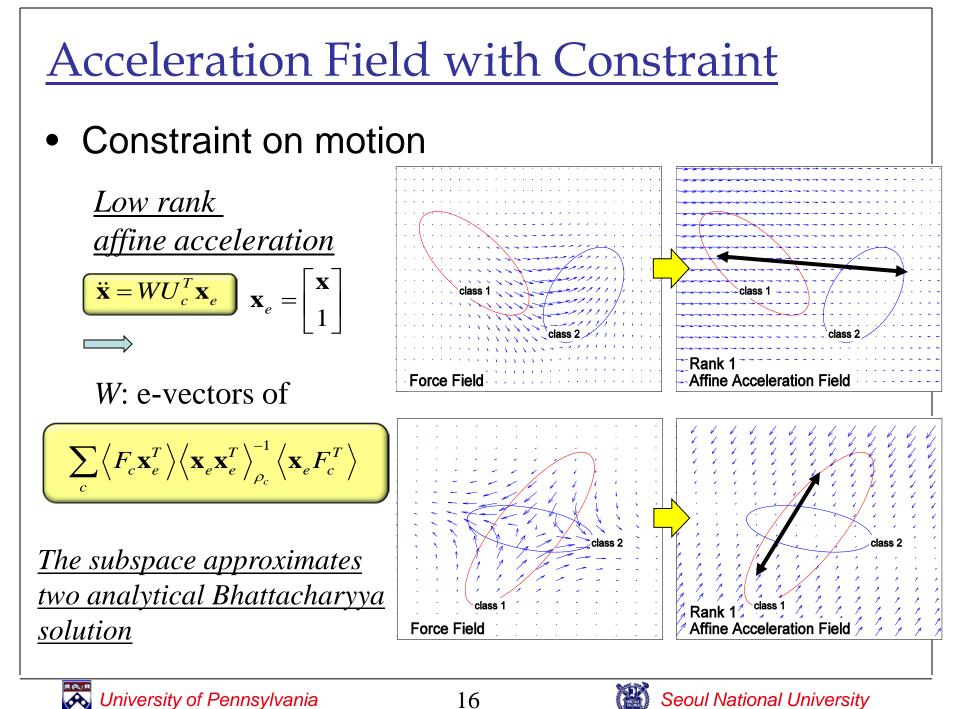
 F_{cst} : force from constraint

• Minimize L

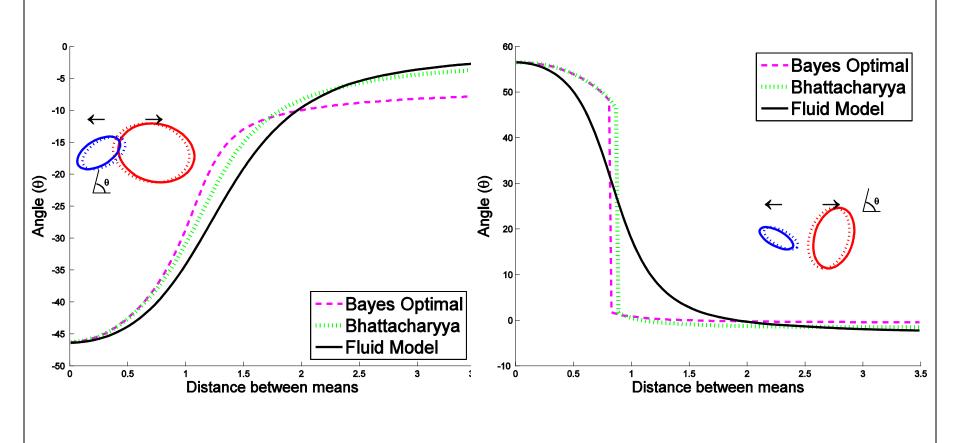


- Minimizing total constraint forces
- Motion of multiple objects with multiple constraints.





Optimal Direction for Rank-one Affine Constraint



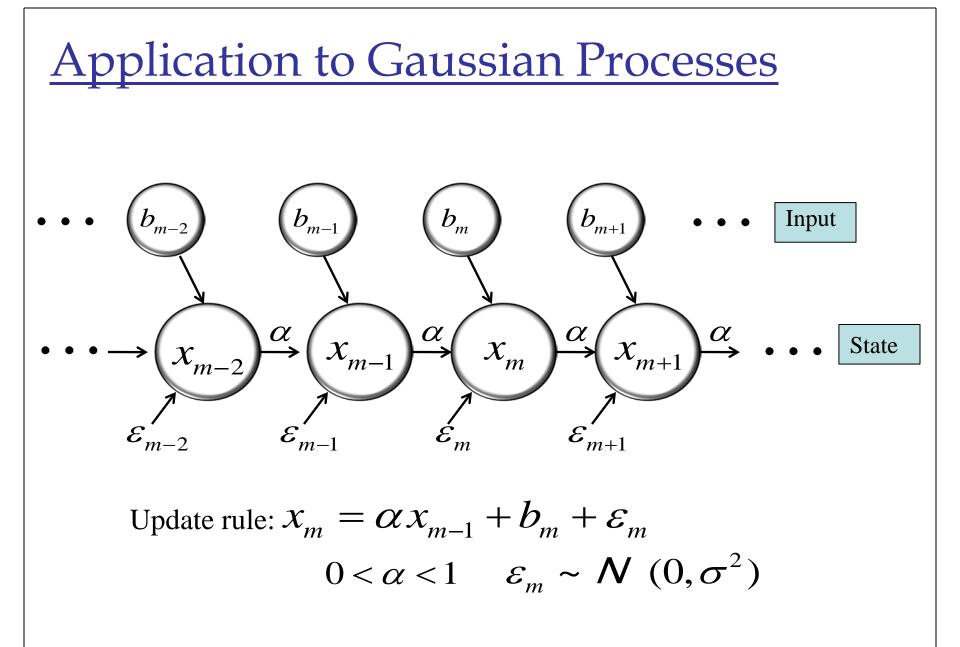
Real Dataset Performance

				(%)
Dataset	# classes	Fukunaga	FDA	Fluid
SpectF	2	78.50	80.20	<u>81.70</u>
lonosphere	2	86.83	85.96	<u>87.54</u>
Parkinsons	2	86.83	82.33	<u>89.33</u>
Ozone	2	71.27	<u>84.54</u>	84.20
Breast Cancer	2	93.83	97.87	<u>97.92</u>
Glass	6		52.53	<u>55.67</u>
USPS	10		90.38	<u>91.48</u>

- Average of 100 realizations for UC Irvine datasets
- Average of 20 realizations for USPS dataset
- Number of dimensions of subspace is (number of classes 1)
- Empirical covariance matrix is regularized with isotropic matrix
- Cross validation is used for each algorithm to choose regularization parameter

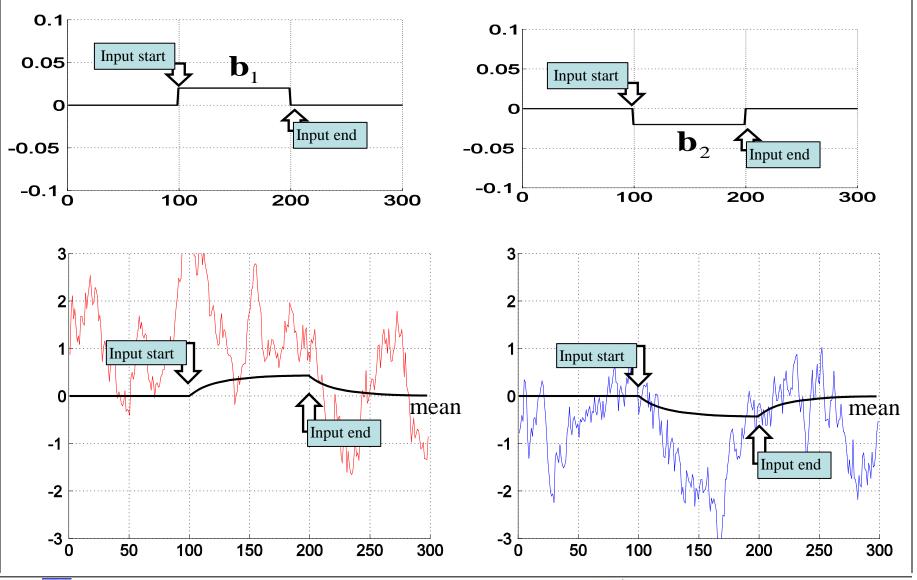
 $(0/_{0})$

Interpretation in **Gaussian Processes**



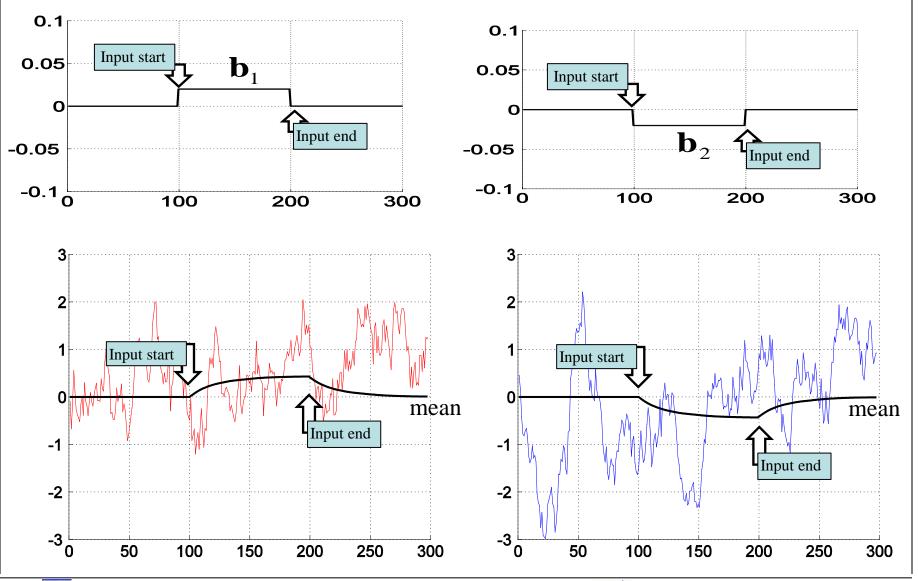
 $GP_1(\mathbf{x} | \alpha, \mathbf{b}_1)$

 $\mathcal{GP}_2(\mathbf{x} | \alpha, \mathbf{b}_2)$



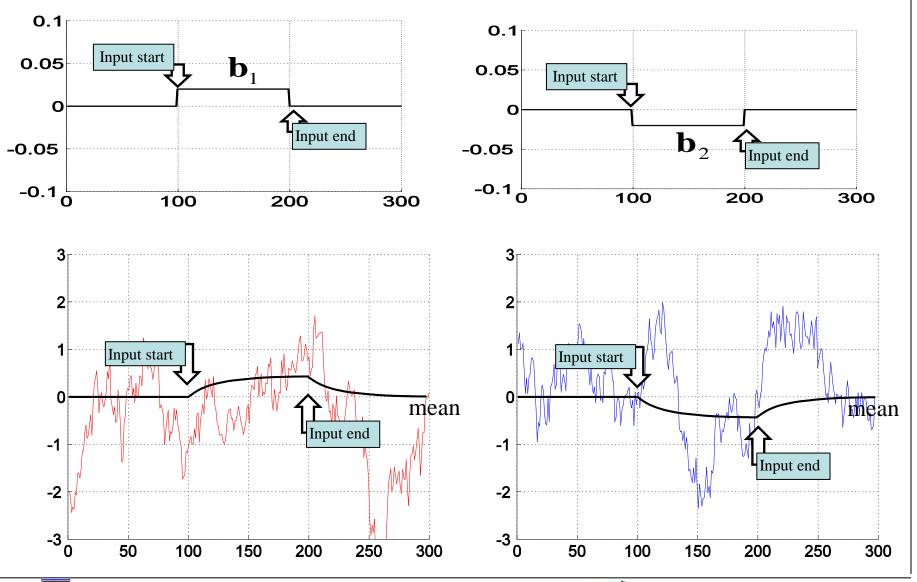
 $GP_1(\mathbf{x} | \alpha, \mathbf{b}_1)$

 $\mathcal{GP}_2(\mathbf{x} | \alpha, \mathbf{b}_2)$



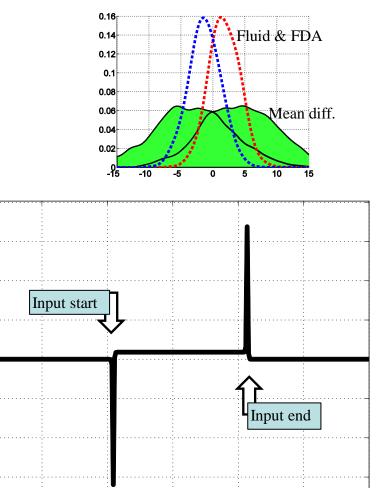
 $GP_1(\mathbf{x} | \alpha, \mathbf{b}_1)$

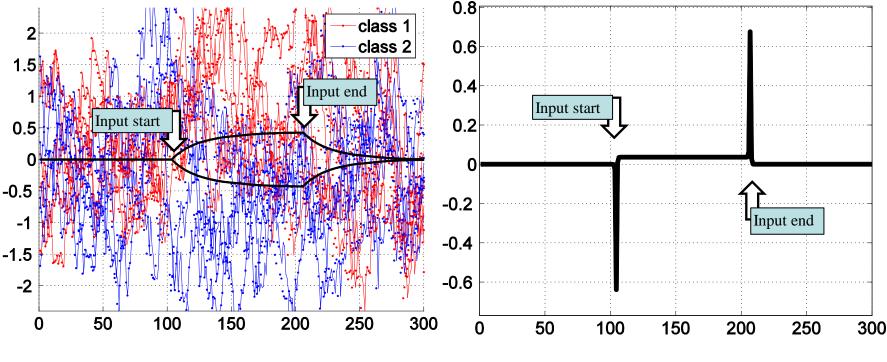
 $\mathcal{GP}_2(\mathbf{x} | \alpha, \mathbf{b}_2)$



Optimal Filter for GP

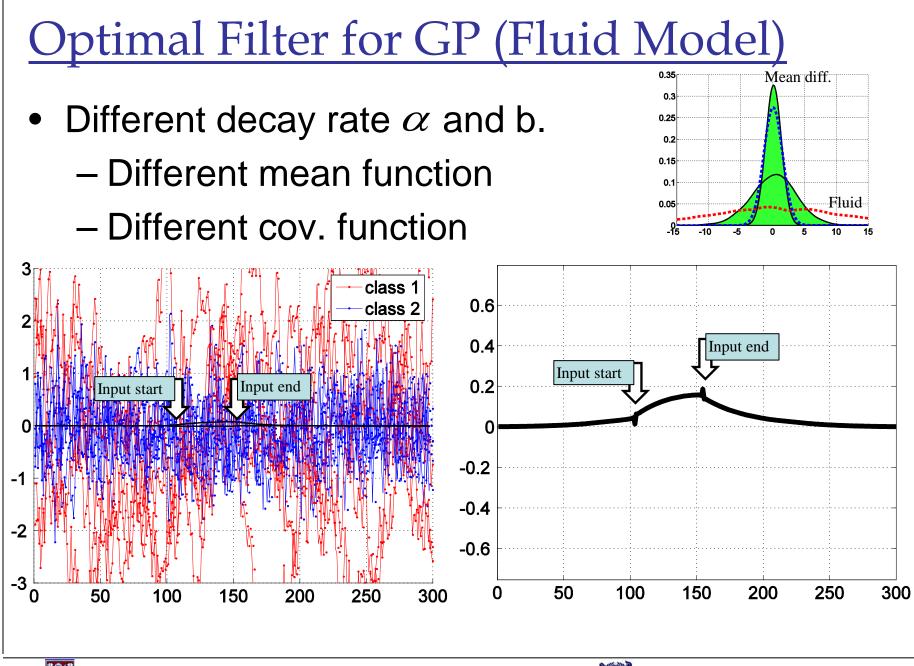
• Same decay rate α - Equal cov. function case





Gaussian Process Interpretation

- Equal mean:
 - Filter of maximum variance difference is the <u>Fourier mode</u> having maximum Fourier coefficient difference.
- Equal cov.:
 - Deconvolved input.
- Optimal filter in general:
 - Combination of Fourier modes and deconvolved input (calculated in Fourier domain).



Summary

- Bhattacharyya Analysis
- Physics-based approach (Fluid model) that approximates Bhattacharyya solution.
- Optimal filter approximation for Gaussian Processes.

Thank You

Yung-Kyun Noh nohyung@seas.upenn.edu

