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Overview
• Dimensionality Reduction Problem for 

Classification – Bhattacharyya Analysis

• Physics Analogy - Force Field in Fluid and 
Motion for Class Separation 

• Discrimination of Gaussian Processes
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Discriminant Analysis
• Maximize class 

separation for 
classification.
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Analysis with Bhattacharyya Bound

• Bhattacharyya bound with Gaussian 
distributions is integrable.
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• Non-convex Function with Global Minimum Near 
Bayes Optimal.

Characteristic 1: 
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Characteristic 2: 
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[Fukunaga 1990]

• Optimizing Integrated Bhattacharrya Bound.
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Characteristic 3: 
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Optimizing Bhattacharrya Bound
• A Good Approximation of the Bayes

Optimumal Subspace
• Analytically Integrable for Gaussians

• Non-Convex, Many Local Minima
• ‘W’ Matrix Cannot be Optimized by Optimizing 

Basis Vectors. (Deflation Cannot be Applied.)
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How to address these problems?
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Fluid Dynamics Model
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Physics-Based Model for Bhattacharrya
Optimization
• Bhattacharyya potential over high dimensional 

distributions to reduce the overlap
– Generate the motion
– Motion & Low dimensional space
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Fluid Model

• Equation of continuity

– Conservation of mass
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Force Field for Class Separation

• Potential to reduce interaction

– Decrease of potential by movement of 2ρ
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Constrained Fluid Model
• Acceleration is optimized under force field 

and given constraint.
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Gauss Principle of Least Constraint

• Minimize L

– Minimizing total constraint forces
– Motion of multiple objects with multiple 

constraints.
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Acceleration Field with Constraint
• Constraint on motion
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Acceleration Field with Constraint
• Constraint on motion
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Optimal Direction for Rank-one Affine 
Constraint
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Real Dataset Performance 

• Average of 100 realizations for UC Irvine datasets
• Average of 20 realizations for USPS dataset
• Number of dimensions of subspace is (number of classes – 1)
• Empirical covariance matrix is regularized with isotropic matrix
• Cross validation is used for each algorithm to choose regularization 

parameter

Dataset # classes Fukunaga FDA Fluid

SpectF 2 78.50 80.20 81.70
Ionosphere 2 86.83 85.96 87.54
Parkinsons 2 86.83 82.33 89.33
Ozone 2 71.27 84.54 84.20
Breast Cancer 2 93.83 97.87 97.92
Glass 6 -- 52.53 55.67
USPS 10 -- 90.38 91.48

(%)
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Interpretation in 
Gaussian Processes
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Application to Gaussian Processes

20

……
1mx −

1mb −

2mx −

2mb −

mx

mb

1mx +

1mb +

1m m m mx x bα ε−= + +
2~ (0, )mε σN

……

2mε − 1mε − mε 1mε +

0 1α< <

Input

Stateα α α α

Update rule:



University of Pennsylvania Seoul National University

Input start

Input end
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Optimal Filter for GP
• Same decay rate 

– Equal cov. function case
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Gaussian Process Interpretation
• Equal mean: 

– Filter of maximum variance difference is the 
Fourier mode having maximum Fourier coefficient 
difference.

• Equal cov.: 
– Deconvolved input.

• Optimal filter in general:
– Combination of Fourier modes and deconvolved

input (calculated in Fourier domain).
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Optimal Filter for GP (Fluid Model)
• Different decay rate     and b.

– Different mean function
– Different cov. function
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Summary
• Bhattacharyya Analysis

• Physics-based approach (Fluid model) that 
approximates Bhattacharyya solution.

• Optimal filter approximation for Gaussian 
Processes.
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Thank You

Yung-Kyun Noh
nohyung@seas.upenn.edu
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