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Wikipedia.org: “Leonardo da Vinci”

Categories: “1452 births”
“1519 deaths” “people from
the province of Florence”
“history of anatomy” “Italian
anatomists” “mathematics and
culture” “Italian vegetarians”
“people prosecuted under
anti-homosexuality laws”
“Italian inventors”
“Renaissance artists” “Tuscan
painters”
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Problem Definition

• Multiclass multilabel classification

• The label set is a folksonomy (a.k.a.
collaborative tagging or social tagging)

• We have a large labeled training set (e.g. all
Wikipedia pages)

• Goal: categorize unseen instances (e.g.
categorize the entire web)
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Properties

• m labeled examples, k categories

• m, k → ∞ together (in 2009 Wikipedia had
2.9M articles, 1.5M categories)

• Possibly k > m

• Statistical Problem: often can’t get an infinite
sample from a given class

• Computational Problem: most classification
algorithms will choke on millions of labels
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Propagating Labels on the Click-Graph

queries web pages

• A bipartite graph
derived from search
engine logs: clicks
encoded as weighted
edges

• Wikipedia pages are
labeled web pages

• Labels propagate along
edges to other pages
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An Example

• http://en.wikipedia.org/wiki/Leonardo da Vinci
passes multiple labels to
http://www.greatItalians.com

• Among them

• “Renaissance artists” - good
• “1452 births” - bad

• Observation: “1452 births” induces many
false-positives (FP): best to remove it
altogether from the classifier output
(FP ⇒ TN, TP ⇒ FN)
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Notation

• X is an instance space, Y = {0, 1}k

• D is a distribution on X × Y

• S = {xi , yi}
2m
i=1 is an i.i.d. sample from D

• A classifier h : X → Y suffers γ-weighted loss
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The Label-Pruning Approach

1. Split data into two halves S1, S2
2. Use S1 to train an initial classifier hpre (e.g. by

propagating labels over the click-graph)

3. Apply hpre to S2, count FP and TP

4. ∀j ∈ {1, . . . , k}, remove label j if

FPj

TPj

>
1− γ

γ

5. Obtain new “pruned” classifier hpost. Note that

hpost explicitly minimizes R̂(h, S2)
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Analysis
Setting: think of hpre as fixed, S2 as random
Goal: Prove that w.h.p. our sample S2 is such that
R(hpost|S2) < R(hpre)− positive

Attempt 1: uniform convergence of labels

Prove that

empirical-FPj

empirical-TPj

−−−−→
m,k→∞

expected-FPj

expected-TPj

uniformly for all j

Problem: many classes only have a handful of
examples
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Analysis

Attempt 2: standard empirical estimation tricks

1. By construction: R̂(hpost, S2) < R̂(hpre, S2)

2. Prove: R̂(hpre, S2) −−−−→
m,k→∞

R(hpre)

3. Prove: R̂(hpost, S2) −−−−→
m,k→∞

R(hpost|S2)

Problem: we can construct cases where k = Θ(m)

and R̂(hpost, S2)−R(hpost|S2) ≤ c < 0 for all m
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Analysis

Attempt 3: less obvious

1. If there exists a small s such that
Pr(‖hpre(x)‖1 ≤ s) = 1, then

R(hpost|S2)
P

−−−−→
m,k→∞

E[R(hpost|S2)]

2. (simplified here for γ = 1
2
): Assume labels can

be sorted s.t.

Pr
(

hpre(x)j = 1
)

= O(j−r)

for some r ∈ [0, 2). Then

R(hpre)−E[R(hpost|S2)] ≥ pos−O
(

√

k2−r/m
)

Ofer Dekel (MSR) More Classes Than Examples AISTATS 2010 13 / 16



Wikipedia Power-Law: r = 1.6
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Wikipedia Experiment
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Conclusion

• The obvious thing is correct, but not for the
obvious reason

• k → ∞ violates assumptions of most multiclass
analyses

• Our analysis is not an extension of a binary
classification analysis

• Future work: more complex label
transformation rules (e.g. substitution)
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