Analyzing and Linking Big Data with Stratosphere

Kostas Tzoumas

<u>kostas.tzoumas@tu-berlin.de</u> <u>www.user.tu-berlin.de/kostas.tzoumas/</u>

- Driven by cheaper storage and computation
 - Cloud computing further enabling economies of scale
 - Open-source software lowers barrier of entry
- Societal and economical impact
 - □ Scientific breakthroughs will come from *data exploration*
 - Success in business dictated by the ability to quickly draw insights from data signals
- Big Data Analytics
 - Analytical workloads scale inversely with cost
- Major challenge: Information marketplaces
 - Data as a resource, analytics as a product
 - □ An "AppStore" for data

The DOPA Vision

- Data Pools as collections of diverse data sets
- Example data pools
 - Evolving history of the Web
 - Financial and statistical data
- Data identification
 - By assigning unique IDs to objects
 - Enables data linkage
- Data Analytics
 - Integration and analytics on diverse data sources
 - Using a common framework and language

Sentiment and market analysis

 An SME producing consumer goods can analyze blogs and social network streams, and link them with customer demographics to perform sentiment analysis and market research

Green houses

- A home buyer can find out the energy consumption and distribution over time in houses in a particular area by linking and analyzing energy with demographic data.
- Traffic analysis, transportation and construction planning
 - Linking weather, traffic, road data

 "Big Data" refers to different applications as well as more data

- Beyond traditional DW queries
- Open-source in data management
 - Enabled primarily by Hadoop popularity
 - Changed research landscape
- New systems are rethinking the complete data management stack at a massively parallel scale
 - As systems mature, need to tackle hard and novel problems

STRATOSPHERE

- Collaborative Research Project
 - 3 Universities, 5 research groups in the Berlin area
- Infrastructure for Big Data Analytics
- Bridge relational DBMSs and MapReduce worlds
 - Intersection of functional languages and data parallelism
 - Re-architecting data management systems for massive parallelism
- Open-source research platform (Apache)
- Used by a variety of Universities and research institutes

Stratosphere Architecture

Stratosphere Use Cases

The Meteor Query Language

- Stratosphere declarative front-end inspired by the IBM Jaql language
- Extensible and flexible
 - □ Easy to add libraries, e.g., for data linkage, cleansing, mining
 - Easy to integrate in language syntax
- Provides operators for Information Extraction and Data Linkage
- Time as a first-class concept

The Nephele Execution Engine

- Executes Nephele schedules
 - DAGs of already parallelized operator instances
 - Parallelization already done by PACT optimizer
- Design decisions
 - Designed to run on top of an laaS cloud
 - Predictable performance
 - Scalability to 1000+ nodes with flexible fault-tolerance
- Permits network, in-memory (both pipelined), file (materialization) channels

The PACT Programming Model

- Internal Stratosphere programming model
 - Also exposed to the programmer for advanced functionality
- Dataflow, side-effect free programming model enabling massive parallelism
- Centered around the concept of second-order functions
 - Generalization of MapReduce

- Knowledge of PACT signature permits automatic optimization ala Relational DBMSs
- Emulates different hand-crafted MapReduce implementations
- Reduce (on tid) Reduce (on tid) Sum up Enables orders of \uparrow (pid=tid, r= $\sum k$) \uparrow \uparrow (pid=tid, r= $\sum k$) \uparrow partial ranks magnitude faster fifo part./sort (tid) Match (on pid) Match (on pid) programs Join P and A ↑ (tid, k=r*p) ↑ ↑(tid, k=r*p) ↑ Frees programmer from buildHT (pid) probeHT (pid) probeHT (pid) buildHT (pid) thinking about broadcast partition (pid) part./sort (tid) partition (pid) execution р (pid, r)(pid, tid, p) (pid, r)(pid, tid, p)

Ongoing Research

DOPA

- Bootstrapping the information economy by providing information marketplaces and related business models
- Brings together heterogeneous data pools
- Enables easy linkage and analytics across data pools via a flexible programming language

Stratosphere

- Technical infrastructure for scalable analytics
- Pushes the MapReduce paradigm forward
- Focal point of several research initiatives across Europe and the world

- FP7 STREP (DOPA), DFG FOR, EIT (Stratosphere)
- DOPA partners
 - □ TU Berlin, IMR, DataMarket, OKKAM, Vico, ami
- Stratosphere partners
 - □ TU Berlin, HU Berlin, HPI
- EIT partners
 - □ TU Berlin, SICS, TU Delft, Inria, U. Trento, Aalto U., STACZKI

Thank you!

<u>www.stratosphere.eu</u> @stratosphere_eu <u>kostas.tzoumas@tu-berlin.de</u>