### Power and Energy Management

### with Energy Control Modules

### Uros Platise <uros.platise@energycon.eu>





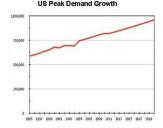
May, 2009, Ljubljana

http://www.energycon.eu

### Contents

Trends of the Electric Grid Systems

### Trends of the Electric Grid Systems


- Trends of the Electric Grid Systems
- 2 Energy Control Modules
  - Energy Conservation
  - EC Key Features
  - Installation and Usage
- 3 Electric Distribution Power Grids
  - Power Losses
  - Short-term Benefits
  - Long-term Benefits



(4) 日本(4) 日本(日本)

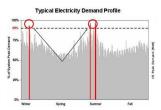
### **Energy Consumption**

- In average yearly energy consumption increase is higher compared to new investments into electric grids → grid congestion
- Heavily loaded grids → big losses proportional to l<sup>2</sup>
- Information technologies → require stable and high available electric distribution
- Energy cost is constantly increasing → energy conservation is trend



Trends of the Electric Grid Systems

Companies: GE, Siemens, LonWorks, ZigBee Alliance, ... Google


Conductors

Energy Conductors and Iskra Zascite, Ljubljana

Trends of the Electric Grid Systems

### Fluctuations of Energy Distribution

- Increase of temporary peak demands → grid congestions, increase losses, require new energy sources, → lead to brown-outs, black-outs
- Alternative sources (solar, wind) → require immediate grid response and availability
- Fluctuations of generators, consumers and grids → require distributed real-time architecture for monitoring and control to maintain stability





Energy Conservation EC Key Features Installation and Usage

### Contents

- Trends of the Electric Grid Systems
  Trends of the Electric Grid Systems
- 2 Energy Control Modules
  - Energy Conservation
  - EC Key Features
  - Installation and Usage
- 8 Electric Distribution Power Grids
  - Power Losses
  - Short-term Benefits
  - Long-term Benefits



Energy Conductors and Iskra Zascite, Ljubljana

< A

(4) 日本(4) 日本(日本)

Energy Conservation EC Key Features Installation and Usage

### Efficient Solution for Energy Conservation



### Conserve

- Conservation based on subscriber power decrease.
- Conservation based on energy consumption decrease.
- Conservation based on detection and elimination of standby power.
- Conservation based on hopping to lower energy classes.



**Energy Conservation** 

### Conservation based on subscriber power decrease

- Typical subscriber power is over 5 kW in Slovenia.
- Requires high grid availability and greater transformers.
- Higher subscriber powers cause greater peak power demands and cause higher power losses in distribution grid.



(< ∃) < ∃)</p>

 Decreasing subscriber power therefore allows lower operating costs in grid systems and lower monthly costs in households and industry.



Energy Conservation EC Key Features Installation and Usage

### Conservation based on energy consumption decrease



- Power and energy metering is shown in intuitive way by blinking the LEDs.
- Employs energy limiter that prevents excess power consumption.
- Learns desired energy usage per tariff. *I.e. a water heater may operate once per day on high tariff and twice on second (lower cost) tariff.*
- Detection of standby currents, powered 24h a day.
- Per day and per tariff metering is logged in internal memory for more than a year.

**Energy** Conductors

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Energy Conservation EC Key Features Installation and Usage

# Conservation based on hopping to lower energy classes.



- Progressive cost of the energy per average daily consumption is divided in several energy classes: (6 kWh: 0%, ..12 kWh: 10%, ..18 kWh: 30%, ..24 kWh: 50%, ..: 100%).
- Typical consumer hops to one energy class less by using EC (auto-)learning energy limiter.
- Average cost decrease of 18%.

energy Conductors

Energy Conservation EC Key Features Installation and Usage

### Contents

Trends of the Electric Grid Systems
 Trends of the Electric Grid Systems

### 2 Energy Control Modules

- Energy Conservation
- EC Key Features
- Installation and Usage
- 8 Electric Distribution Power Grids
  - Power Losses
  - Short-term Benefits
  - Long-term Benefits



(4) 日本(4) 日本(日本)

Energy Conservation EC Key Features Installation and Usage

# **EC Key Features**

- Protection against common over-current.
- Energy conservation, metering and issuing of energy efficiency certificates.
- Fault detection.
- Anti-smog: reduction of electromagnetic and electrostatic radiation.
- Integration of alternative sources.
- Simple installation and usage.



Highly integrated solution in a single EC module!



Energy Conductors and Iskra Zascite, Ljubljana

Energy Conservation EC Key Features Installation and Usage

### Protection against common over-current



Energy Conductors

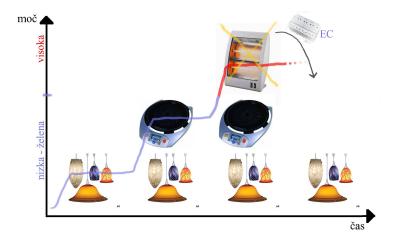
highest priority

lowest

priority

Example of minimal system requirements:

- Iighting: 100 W
- water heaters: 1.5 kW
- heating: 0.7 1.8 kW


Total of 3.4 kW!

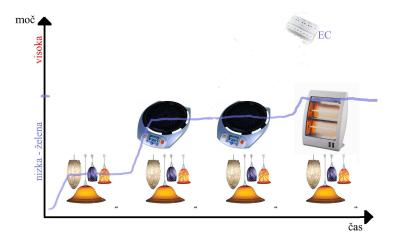
- ECs decrease present power and peak demands.
- ECs release grid and decrease losses.
- ECs adapts to present grid power availability.
- Dynamic marketing of the energy dynamic cost.

ヘロト ヘワト ヘビト ヘビト

Energy Control Modules Electric Distribution - Power Grids EC Key Features

### Protection against common over-current






★ E > ★ E >

э

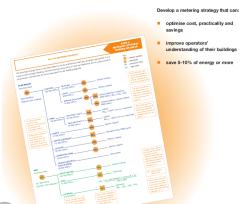
Energy Conservation EC Key Features Installation and Usage

### Protection against common over-current





.≣⇒.


프 🕨 🗆 프

Energy Conservation EC Key Features Installation and Usage

### Energy Conservation, Energy Certificates

#### Metering energy use in new non-domestic buildings

A guide to help designers meet Part L2 of the Building Regulations



Energy Conductors

# New European energy regulations:

- Power metering and energy conservation.
- Issuing of energy efficiency certificates.
- Retention of metering logs for more than a year.

(日)

EC Key Features

### Fault detection

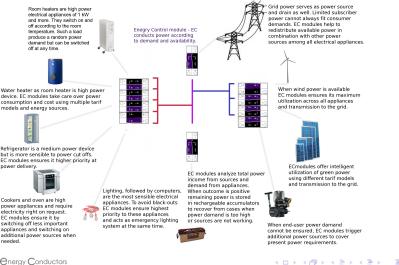
# Protects

- Fault generation on over-current event. (Fast response times below 50 A)
- Fault generation on excess energy consumption detection. (in case of water release from water heater)
- Fault generation on insufficient energy consumption detection. (in case of heater malfunctioning)



Energy Conductors and Iskra Zascite, Ljubljana

Energy Conservation EC Key Features Installation and Usage


### Anti-Smog: Reduction of Electric Radiation



- Typical household contains from 1 to 2 km of wires in electric installations.
- Typical electric field strength is from 15 V/m up to 100 V/m and magnetic field strength from 10 nT up to 10 μT.
- Radiation influences on human cells, causing sleep disorders and heart rate variability.
- EC anti-smog function reduces radiation for 40 dB (100x).

Energy Conservation EC Key Features Installation and Usage

### Integration of Alternative Sources





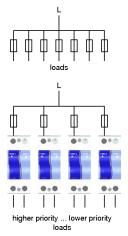
Energy Conductors and Iskra Zascite, Ljubljana

Energy Conservation EC Key Features Installation and Usage

### Contents

Trends of the Electric Grid Systems
 Trends of the Electric Grid Systems

### 2 Energy Control Modules


- Energy Conservation
- EC Key Features
- Installation and Usage
- 3 Electric Distribution Power Grids
  - Power Losses
  - Short-term Benefits
  - Long-term Benefits



(4) 日本(4) 日本(日本)

### Installation

Installation and Usage



# Simple installation

- Into existing and new electric housings. ۰
- Connect after standard automatic fuses. ۲
- Possible elimination of redundant fuses.
- Loads from the left have higher priorities. In case of common over-current event. loads from the right get disconnected first.

(< ∃) < ∃)</p>

Energy Conservation EC Key Features Installation and Usage

# Simple usage

Usage

- No manual configuration Fully automatic!
- Visual indication of daily consumption and present power by dual-colour LEDs.
- In cases of fault event generation it is automatically cleared after faulty load is disconnected.
- Automatic configuration of energy limiter. It learns about desired energy conservation and assures that energy consumption stays within the desired limits in the following days.
- Anti-smog function automatically turns on when load is disconnected.

Advanced users may obtain detailed metering report on their PC.

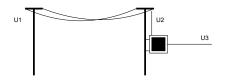


ヘロト ヘ戸ト ヘヨト ヘヨト

Power Losses Short-term Benefits Long-term Benefits

### Contents

- Trends of the Electric Grid Systems
   Trends of the Electric Grid Systems
- 2 Energy Control Modules
  - Energy Conservation
  - EC Key Features
  - Installation and Usage
- Electric Distribution Power Grids
   Power Losses
  - Short-term Benefits
  - Long-term Benefits




Energy Conductors and Iskra Zascite, Ljubljana

(4) 日本(4) 日本(日本)

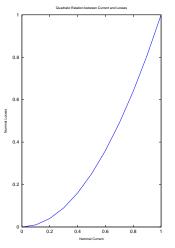
Power Losses Short-term Benefit Long-term Benefits

### **Power Losses**



- Maximum power/energy transfer in transmission lines requires voltage drop be <5% yields 10% of power loss</li>
- Maximum temperature of conducting material <100°C, over-loading for about 10-20% is allowable for short-time
- Additional power losses are in transformers; maximum total voltage drop of <10% yields 20% of power loss




energy Conductors

< □ > < 同 > < 三 > <

### **Power Losses**

Energy Conductors





Maximum transmission current:

$$I_{max}=rac{1}{R_T}(5\%)U_{in}$$

Present losses, according to present current *I*:

$$P_{loss} = rac{l^2}{l_{max}}(5\%)U_{lin}$$

The 10% current decrease reduces nominal losses for 20%, and 20% current decrease for 36%.

Power Losses Short-term Benefits Long-term Benefits

### Power Losses and Limited Power



- Limited power of transmission lines and transformers
- Incorporation of self-limiting function based on end-voltages
- Distance from transformer estimation is based on voltage range and average drop energy Conductors

Power Losses Short-term Benefits Long-term Benefits

## Contents

- Trends of the Electric Grid Systems
   Trends of the Electric Grid Systems
- 2 Energy Control Modules
  - Energy Conservation
  - EC Key Features
  - Installation and Usage
- 8 Electric Distribution Power Grids
  - Power Losses
  - Short-term Benefits
  - Long-term Benefits



(七日)) (日日)

Power Losses Short-term Benefits Long-term Benefits

### Short-term Benefits

- Offer your customers an efficient way to conserve energy.
- Energy conservation in distribution grid, transfer greater amount of energy at lower cost.
- Elimination of peak power demands.
- Release over-loaded transformer stations and decrease investment/upgrade cost.
- Increase grid stability and prevent system black-outs.
- Reduce investment requirements in power plants.
- Comply new European regulation related to energy efficiency.
- Support for SME, business buildings, etc.



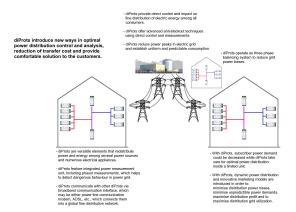
ヘロト ヘワト ヘビト ヘビト

Power Losses Short-term Benefits Long-term Benefits

### Contents

- Trends of the Electric Grid Systems
   Trends of the Electric Grid Systems
- 2 Energy Control Modules
  - Energy Conservation
  - EC Key Features
  - Installation and Usage
- 3 Electric Distribution Power Grids
  - Power Losses
  - Short-term Benefits
  - Long-term Benefits




★ E → < E</p>

Power Losses Short-term Benefits Long-term Benefits

### Long-term Benefits

- Connects with Power Meters (M-bus).
- Optimise present power demand vs. present power availability.
- Full control over distributed alternative sources.
- Introduce dynamic marketing model per energy availability.

**Energy** Conductors



Energy Conductors and Iskra Zascite, Ljubljana

Power Losses Short-term Benefits Long-term Benefits

?



Energy Conductors and Iskra Zascite, Ljubljana