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Level 3 Marr:

Implementation

* In our brain - there are just
spikes

* Neither suggestive of
generative nor discriminative
algorithm of learning




Neurons
generate spikes

* Normally we do not care about
generative model - just
performance for decisions

+ But we do want to understand
the brain

* Which means understand the
model which generates spikes

* Understand structure, function
and objectives



lt1s a big

problem

* Currently we can only record
from small percentage of
neurons at a time

* and yet we want to understand
how it works
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Hope #1

+ Brain consists of areas

Within each area neurons are
essentially all identical

* Apart from small number of
parameters

* Strong analogy to computer
programs, e.g. neural networks

* Map how activity relates to
outside world
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Hope #2

* Brain consists of groups of
similar neurons

* Neurons within each group are
essentially identical

* While their relation to the
outside world may be
complicated their interactions
may be simple

* Therefore, recording from each
of the groups is enough




Hope #3

Neurons may all be different
from one another

But their learning rules may be
identical

If we know the statistics of
inputs we can predict
distributions

If we understand how they
learn we might understand
how it works




Hope #4: New

technologies

* New technologies accelerate
rapidly

+ Record from all Neurons at the
same time

* And then?
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A well known Law
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Implications

* Focus not on speed but on scaling
* O(n) notation

* What is O(n), O(n log n) etc?



A Much Less known Law
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Implications

* Analyze scaling behavior
* Computer time per neuron (no worries)

* Information learned per neuron!



Outhne of talk

+ Understand how neurons relate to the outside world
* How neurons represent uncertainty

+ How neurons relate to one another



Part 1: How neurons relate to the
outside world




Experimental
studies

]

Vary the stimulus

L

Vary the behavioral demands

<

Measure behavior

* Measure neural signals

Recording
electrode
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Motor Tuning in M1
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Orientation Tuning in V1
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Disparity Tuning in V1
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Spatial Tuning
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Bygone Actress Tuning
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Bayesian tuning
curve analysis

* We want to understand p
(tuning curve | spikes)

* Markov-Chain-Monte-Carlo

+ Cronin et al 2010

A

)

Deg

-
o
N

Preferred Orientation (

Firing Rate / Spike Count (Jittered)

o
(=]

©
@

©
s

—— Posterior Contours
—— Sample Path
---- Rejected Samples

12 6 20 24
Tuning Width (Degrees)

m True TC
== Median Sampled TC
--=-- Samples 95% Cred. Int.
—— Individual TC Samples
— MSE TC

B - MSE 95% Conf. Int.

20 40 60 80 100 120 140 160 180
Stimulus Orientation (Degrees)



Part 2: How neurons may
represent uncertainty




Many theories

* Brain has no reason to use code

that Konrad can well
understand
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Distributed
representation

+ Distribution across neurons
represents uncertainty

* Different variables represented
by different populations

+ + fast

* -requires many neurons
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Representation s

by samples

Instantaneous
firing rate

+ Distribution across neurons
represents uncertainty

* Different variables represented
by different populations

Neuron #2

* + few neurons necessary Instantaneous
firing rate

+ - glow
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Part 3: Reverse engineering the
way neurons interact




Why model interactions?
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A generative model of spikes

N T
Ai(t) = exp (Z Z Wi aesi(t — At))

=1 At=1

* Biological interpretation

A B C
* Expressive power {
* Real reason why we use this . A
~—
* MAP estimation of weights /




Explaiing away
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Results from real neurons
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A more general model

— ezp W; atsi(t — At) + Vi.arug(t — At)
babs 3 )

=1 At=1

* Neurons are affected by other neurons

* Also affected via tuning curves by outside world



Graphical version
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Information per Neuron
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Spike Timing Dependent
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Tuning curves are explained away

Spike Count

Spike Count
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Countless future machine learning
problems

-

<

<

-

Find structure in generative model
Meaningful priors
Link to cognitive phenomena

Reverse engineer learning rules



Acknowledgements

<

Tan Stevenson

<

Nicho Hatsopoulos

<

Adam Kohn

<

Lee Miller, Jim Rebesco

<

Sara Solla



