Neuroscience, cognitive science and machine learning

Konrad Kording (with inspiration by Peter Dayan)

May 12th 2010

Level 3 Marr: Implementation

* In our brain - there are just spikes
* Neither suggestive of generative nor discriminative algorithm of learning

Neurons

 generate spikes* Normally we do not care about generative model - just performance for decisions
* But we do want to understand the brain
* Which means understand the model which generates spikes
* Understand structure, function and objectives

It is a big problem

* Currently we can only record from small percentage of neurons at a time
* and yet we want to understand how it works

Hope \#1

* Brain consists of areas
* Within each area neurons are essentially all identical
* Apart from small number of parameters
* Strong analogy to computer programs, e.g. neural networks
* Map how activity relates to outside world

Hope \#2

* Brain consists of groups of similar neurons
* Neurons within each group are essentially identical
*While their relation to the outside world may be complicated their interactions may be simple
* Therefore, recording from each of the groups is enough

Hope \#3

* Neurons may all be different from one another
* But their learning rules may be identical
* If we know the statistics of inputs we can predict distributions
* If we understand how they learn we might understand how it works

Hope \#4: New technologies

* New technologies accelerate rapidly
* Record from all Neurons at the same time
* And then?

A well known Law

* My phone = fastest computer on the planet in 1980

Implications

* Focus not on speed but on scaling
* $\mathrm{O}(\mathrm{n})$ notation
*What is $\mathrm{O}(\mathrm{n}), \mathrm{O}(\mathrm{n} \log \mathrm{n})$ etc?

A Much Less known Law

Implications

* Analyze scaling behavior
* Computer time per neuron (no worries)
* Information learned per neuron!

Outline of talk

* Understand how neurons relate to the outside world
* How neurons represent uncertainty
* How neurons relate to one another

Part 1: How neurons relate to the outside world

Experimental studies

* Vary the stimulus
* Vary the behavioral demands
* Measure behavior
* Measure neural signals

unknown image source

Motor Tuning in M1

Slide adapted from Dayan

Orientation Tuning in V1

Slide adapted from Dayan

Disparity Tuning in V1

B

Slide adapted from Dayan

Spatial Tuning

Bygone Actress Tuning

Slide adapted from Dayan
Quiroga et al (2005)

Bayesian tuning curve analysis

* We want to understand p (tuning curve l spikes)
* Markov-Chain-Monte-Carlo
* Cronin et al 2010

Part 2: How neurons may represent uncertainty

Many theories

* Brain has no reason to use code that Konrad can well understand

A - Low uncertainty © - High uncertainty

Gain encoding (e.g. Ma et al)

Separate population (e.g. Schultz et al)

Covariate, e.g. direction

Covariate, e.g. direction
C

Probability change

Tuning width (e.g. Zemel et al)
(e.g. Deneve et al)

Spatiotemporal
variability
(e.g. Hinton, Hoyer)

Time

Distributed representation

* Distribution across neurons represents uncertainty
* Different variables represented by different populations
* + fast
* - requires many neurons

Fiser et al 2010

Representation by samples

* Distribution across neurons represents uncertainty
* Different variables represented by different populations
* + few neurons necessary

Part 3: Reverse engineering the way neurons interact

Why model interactions?

A generative model of spikes

$$
\lambda_{i}(t)=\exp \left(\sum_{i=1}^{N} \sum_{\Delta t=1}^{T} W_{i, \Delta t} s_{i}(t-\Delta t)\right)
$$

* Biological interpretation
* Expressive power
* Real reason why we use this
* MAP estimation of weights

Explaining away

Results from real neurons

A more general model

$\lambda_{i}(t)=\exp \left(\sum_{i=1}^{N} \sum_{\Delta t=1}^{T} W_{i, \Delta t} s_{i}(t-\Delta t)+\sum_{k=1}^{K} V_{i, \Delta t} v_{k}(t-\Delta t)\right)$

* Neurons are affected by other neurons
* Also affected via tuning curves by outside world

Graphical version

Information per Neuron

Receptive/Movement Field

Hatsopoulos

> Kohn

Spike Timing Dependent Plasticity

Tuning curves are explained away

Examples of Tuning Curve Changes with Network Size

Countless future machine learning problems

* Find structure in generative model
* Meaningful priors
* Link to cognitive phenomena
* Reverse engineer learning rules

Acknowledgements

* Ian Stevenson
* Nicho Hatsopoulos
* Adam Kohn
* Lee Miller, Jim Rebesco
* Sara Solla

