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Level 3 Marr: 
Implementation

✤ In our brain - there are just 
spikes

✤ Neither suggestive of 
generative nor discriminative 
algorithm of learning 



Neurons 
generate spikes

✤ Normally we do not care about 
generative model - just 
performance for decisions

✤ But we do want to understand 
the brain

✤ Which means understand the 
model which generates spikes

✤ Understand structure, function 
and objectives



It is a big 
problem

✤ Currently we can only record 
from small percentage of 
neurons at a time

✤ and yet we want to understand 
how it works

1011 Neurons



Hope #1

✤ Brain consists of areas

✤ Within each area neurons are 
essentially all identical

✤ Apart from small number of 
parameters

✤ Strong analogy to computer 
programs, e.g. neural networks

✤ Map how activity relates to 
outside world



Hope #2

✤ Brain consists of groups of 
similar neurons

✤ Neurons within each group are 
essentially identical

✤ While their relation to the 
outside world may be 
complicated their interactions 
may be simple

✤ Therefore, recording from each 
of the groups is enough



Hope #3

✤ Neurons may all be different 
from one another

✤ But their learning rules may be 
identical

✤ If we know the statistics of 
inputs we can predict 
distributions

✤ If we understand how they 
learn we might understand 
how it works



Hope #4: New 
technologies

✤ New technologies accelerate 
rapidly

✤ Record from all Neurons at the 
same time

✤ And then?



✤ My phone = fastest computer on the planet in 1980

A well known Law



Implications

✤ Focus not on speed but on scaling

✤ O(n) notation

✤ What is O(n), O(n log n) etc?
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A Much Less known Law



Implications

✤ Analyze scaling behavior

✤ Computer time per neuron (no worries)

✤ Information learned per neuron!



Outline of talk

✤ Understand how neurons relate to the outside world

✤ How neurons represent uncertainty

✤ How neurons relate to one another



Part 1: How neurons relate to the 
outside world



Experimental 
studies

✤ Vary the stimulus

✤ Vary the behavioral demands

✤ Measure behavior

✤ Measure neural signals

unknown image source



Georgopoulos et al (1982)

Motor Tuning in M1

Slide adapted from Dayan



Hubel & Wiesel (1968)

Orientation Tuning in V1

Slide adapted from Dayan



Poggio & Talbot (1981)

Disparity Tuning in V1

Slide adapted from Dayan



entorhinal cortex hippocampus Moser et al

Spatial Tuning

Slide adapted from Dayan



Quiroga et al (2005)

Bygone Actress Tuning

Slide adapted from Dayan



question more precisely by asking, for each parameter of the
chosen tuning-curve function, what range of parameter values
is consistent with the set of observed neuronal responses? For
example, what is the plausible range of preferred orientations
for an orientation selective neuron in V1?

Questions of this type can be answered directly from a set of
MCMC samples because they approximate the joint posterior
distribution over the parameter values. Parameter values that
are sampled more often correspond to those that are more
likely to account for the data. To obtain, say, a 95% credibility
interval for parameter pi, the samples {p̃i

(1) . . . p̃i
(M)} are first

sorted from lowest to highest to obtain the rank order !p̃i
[1] . . .

p̃i
[M]". Next, the lowest and highest 2.5% of the samples are

discarded. For example, if 1,000 samples were collected, then
the lowest and highest 25 would be discarded. The remaining
extreme values define the desired error margin (see Fig. 3, A
and B). In the 1,000-sample example, these would be the 26th
and 975th sample from the ranked list. Importantly, this
method does not need to make the assumption that the posterior
is Gaussian. Depending on the model, the distribution may
even been asymmetric or multimodal. As such, this method can
deal with many of the potentially non-Gaussian distributions
occurring in neuroscience.

In addition to credibility intervals, several other statistical
estimates can be calculated from the samples. We can find a
maximum a posteriori (MAP) estimate as well as the median or
mean values of each parameter (Fig. 2B). When the prior over
parameters is noninformative, the MAP estimate is equivalent
to a MLE. However, in many cases, the mean or median
posterior is a more robust estimate of the parameters. These
estimators are optimal in that the posterior mean minimizes the
squared error between the estimated parameter and its true
value while the posterior median minimizes linear loss (Berger
1985). Like the maximum likelihood estimate, these estimators
are asymptotically unbiased and efficient in most cases. The
difference between MLE and Bayes estimators is generally
apparent only for small sample sizes and disappears as more
data are collected. In simulations of orientation-tuned neurons,
for instance, the MLE and Bayes tuning-curve estimates are the
same after #40 trials (Fig. 4). For small sample sizes, using
Bayes estimators, which take the distribution over parameters
into account, can improve estimation.

Visualization of potential tuning curves

The presented approach also allows for simple visualization
of the set of potential tuning curves that are compatible with
the observed data. This visualization can be a useful tool for
understanding the quantitative power that is provided by the
data from a single cell (as used in Figs. 3 and 5). Because the
posterior distribution over potential tuning curves may not be
Gaussian and the parameters may not always be linearly
independent, error bars on each parameter provide only part of
the picture. For instance, the distribution of potential tuning
curves may be skewed or multimodal (Fig. 5, B and E). This is
one advantage of representing an entire distribution over the
tuning curves described by a certain model.

Assaying quantitative changes in response properties

Quantifying tuning properties using the methods in the
preceding text is often merely the first step in answering
scientific questions about physiological data. Frequently, we
wish to know whether a particular manipulation has resulted in
a significant change in tuning properties. For example, it might
be asked whether visual neurons change their orientation se-
lectivity properties in response to attentional influences, sen-
sory pattern adaptation, or perceptual learning (Dragoi et al.
2000, 2001; McAdams and Maunsell 1999) or if the preferred
directions of neurons in motor cortex change in a force field
(Rokni et al. 2007). In these kinds of experiments, neuronal
responses would be measured in both the control and test

FIG. 2. Markov chain Monte Carlo (MCMC) sampling. A: metropolis sam-
pling proceeds by making a biased random walk on the surface defined by the joint
posterior probability density of the model parameters. Shown here are 2 dimen-
sions of this surface for a circular Gaussian tuning-curve function; the preferred
orientation and tuning width parameters are shown, while the amplitude and
baseline parameters are omitted for clarity. The gray lines are the contours of
uniform density. The blue path shows the trajectory of the samples with
rejected proposals shown in red. Note that rejected samples always represent
“downhill” moves, whereas accepted samples can be either up- or downhill. If
enough samples are collected, the number of samples per region will converge
to match the height of the density contours in the region; in other words, the
samples will approximate the distribution. B: each sample corresponds to a
different circular Gaussian tuning curve. Shown here are sampled tuning
curves (light red lines), which are obtained by applying the generative model
to simulated spike count data (black dots) generated from a known tuning
curve (solid black line). Both the sampling method (solid gray line) and
MSE-based nonlinear optimization (solid blue line) perform well in recovering
ground truth in this case. However, the 95% error bounds generated from the
samples (dashed gray lines) are narrower than those obtained from optimiza-
tion, indicating that the hierarchical model and sampling approach is able to
make more efficient use of the data. In addition, plotting the individual samples
provides a nuanced understanding of the range of possible tuning curves which
could have produced the observed data.

Innovative Methodology
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Bayesian tuning 
curve analysis

✤ We want to understand p
(tuning curve|spikes)

✤ Markov-Chain-Monte-Carlo

✤ Cronin et al 2010



Part 2: How neurons may 
represent uncertainty



Many theories

✤ Brain has no reason to use code 
that Konrad can well 
understand
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Distributed 
representation

✤ Distribution across neurons 
represents uncertainty

✤ Different variables represented 
by different populations

✤ + fast

✤ - requires many neurons

Box 2. Probabilistic representational schemes for inference and learning

Representing uncertainty associated with sensory stimuli requires
neurons to represent the probability distribution of the environmental
variables that are being inferred. One class of schemes called
probabilistic population codes (PPCs) assumes that neurons corre-
spond to parameters of this distribution (Figure Ia). A simple but
highly unfeasible version of this scheme would be if different neurons
encoded the elements of the mean vector and covariance matrix of a
multivariate Gaussian distribution. At any given time, the activities of
neurons in PPCs provide a complete description of the distribution by
determining its parameters, making PPCs and other parametric
representational schemes particularly suitable for real-time inference
[80–82]. Given that, in general, the number of parameters required to
specify a multivariate distribution scales exponentially with the
number of its variables, a drawback of such schemes is that the
number of neurons needed in an exact PPC representation would be
exponentially large and with fewer neurons the representation
becomes approximate. Characteristics of the family of representable
probability distributions by this scheme are determined by the
characteristics of neural tuning curves and noisiness [16] (Table I).

An alternative scheme to represent probability distributions in
neural activities is based on each neuron corresponding to one of the
inferred variables. For example, each neuron can encode the value of
one of the variables of a multivariate Gaussian distribution. In
particular, the activity of a neuron at any time can represent a sample
from the distribution of that variable and a ‘‘snapshot’’ of the activities
of many neurons therefore can represent a sample from a high-
dimensional distribution (Figure Ib). Such a representation requires
time to take multiple samples (i.e. a sequence of firing rate
measurements) for building up an increasingly reliable estimate of
the represented distribution which might be prohibitive for on-line
inference, but it does not require exponentially many neurons and —
given enough time — it can represent any distribution (Table I). A
further advantage of collecting samples is that marginalization, an
important case of computing integrals that infamously plague
practical Bayesian inference, learning and decision-making, becomes
a straightforward neural operation. Finally, although it is unclear how
probabilistic learning can be implemented with PPCs, sampling based
representations seem particularly suitable for it (see main text).

Figure I. Two approaches to neural representations of uncertainty in the cortex. (a) Probabilistic population codes rely on a population of neurons that are tuned to the
same environmental variables with different tuning curves (populations 1 and 2, colored curves). At any moment in time, the instantaneous firing rates of these neurons
(populations 1 and 2, colored circles) determine a probability distribution over the represented variables (top right panel, contour lines), which is an approximation of
the true distribution that needs to be represented (purple colormap). In this example, y1 and y2, are independent, but in principle, there could be a single population with
neurons tuned to both y1 and y2. However, such multivariate representations require exponentially more neurons (see text and Table I). (b) In a sampling based
representation, single neurons, rather than populations of neurons, correspond to each variable. Variability of the activity of neurons 1 and 2 through time represents
uncertainty in environmental variables. Correlations between the variables can be naturally represented by co-variability of neural activities, thus allowing the
representation of arbitrarily shaped distributions.

Table I. Comparing characteristics of the two main modeling approaches to probabilistic neural representations
PPCs Sampling-based

Neurons correspond to Parameters Variables
Network dynamics required (beyond the first layer) Deterministic Stochastic (self-consistent)
Representable distributions Must correspond to a particular

parametric form
Can be arbitrary

Critical factor in accuracy of encoding a distribution Number of neurons Time allowed for sampling
Instantaneous representation of uncertainty Complete, the whole distribution is

represented at any time
Partial, a sequence of samples
is required

Number of neurons needed for representing
multimodal distributions

Scales exponentially with the
number of dimensions

Scales linearly with the number of
dimensions

Implementation of learning Unknown Well-suited

Review Trends in Cognitive Sciences Vol.14 No.3

126

Fiser et al 2010



Representation 
by samples

✤ Distribution across neurons 
represents uncertainty

✤ Different variables represented 
by different populations

✤ + few neurons necessary

✤ - slow

Box 2. Probabilistic representational schemes for inference and learning

Representing uncertainty associated with sensory stimuli requires
neurons to represent the probability distribution of the environmental
variables that are being inferred. One class of schemes called
probabilistic population codes (PPCs) assumes that neurons corre-
spond to parameters of this distribution (Figure Ia). A simple but
highly unfeasible version of this scheme would be if different neurons
encoded the elements of the mean vector and covariance matrix of a
multivariate Gaussian distribution. At any given time, the activities of
neurons in PPCs provide a complete description of the distribution by
determining its parameters, making PPCs and other parametric
representational schemes particularly suitable for real-time inference
[80–82]. Given that, in general, the number of parameters required to
specify a multivariate distribution scales exponentially with the
number of its variables, a drawback of such schemes is that the
number of neurons needed in an exact PPC representation would be
exponentially large and with fewer neurons the representation
becomes approximate. Characteristics of the family of representable
probability distributions by this scheme are determined by the
characteristics of neural tuning curves and noisiness [16] (Table I).

An alternative scheme to represent probability distributions in
neural activities is based on each neuron corresponding to one of the
inferred variables. For example, each neuron can encode the value of
one of the variables of a multivariate Gaussian distribution. In
particular, the activity of a neuron at any time can represent a sample
from the distribution of that variable and a ‘‘snapshot’’ of the activities
of many neurons therefore can represent a sample from a high-
dimensional distribution (Figure Ib). Such a representation requires
time to take multiple samples (i.e. a sequence of firing rate
measurements) for building up an increasingly reliable estimate of
the represented distribution which might be prohibitive for on-line
inference, but it does not require exponentially many neurons and —
given enough time — it can represent any distribution (Table I). A
further advantage of collecting samples is that marginalization, an
important case of computing integrals that infamously plague
practical Bayesian inference, learning and decision-making, becomes
a straightforward neural operation. Finally, although it is unclear how
probabilistic learning can be implemented with PPCs, sampling based
representations seem particularly suitable for it (see main text).

Figure I. Two approaches to neural representations of uncertainty in the cortex. (a) Probabilistic population codes rely on a population of neurons that are tuned to the
same environmental variables with different tuning curves (populations 1 and 2, colored curves). At any moment in time, the instantaneous firing rates of these neurons
(populations 1 and 2, colored circles) determine a probability distribution over the represented variables (top right panel, contour lines), which is an approximation of
the true distribution that needs to be represented (purple colormap). In this example, y1 and y2, are independent, but in principle, there could be a single population with
neurons tuned to both y1 and y2. However, such multivariate representations require exponentially more neurons (see text and Table I). (b) In a sampling based
representation, single neurons, rather than populations of neurons, correspond to each variable. Variability of the activity of neurons 1 and 2 through time represents
uncertainty in environmental variables. Correlations between the variables can be naturally represented by co-variability of neural activities, thus allowing the
representation of arbitrarily shaped distributions.

Table I. Comparing characteristics of the two main modeling approaches to probabilistic neural representations
PPCs Sampling-based

Neurons correspond to Parameters Variables
Network dynamics required (beyond the first layer) Deterministic Stochastic (self-consistent)
Representable distributions Must correspond to a particular

parametric form
Can be arbitrary

Critical factor in accuracy of encoding a distribution Number of neurons Time allowed for sampling
Instantaneous representation of uncertainty Complete, the whole distribution is

represented at any time
Partial, a sequence of samples
is required

Number of neurons needed for representing
multimodal distributions

Scales exponentially with the
number of dimensions

Scales linearly with the number of
dimensions

Implementation of learning Unknown Well-suited

Review Trends in Cognitive Sciences Vol.14 No.3

126
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Part 3: Reverse engineering the 
way neurons interact

X Y



Why model interactions?
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A generative model of spikes

λi(t) = exp

�
N�

i=1

T�

∆t=1

Wi,∆tsi(t−∆t)

�

✤ Biological interpretation

✤ Expressive power

✤ Real reason why we use this

✤ MAP estimation of weights



Explaining away



Results from real neurons

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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Fig. 2. Reconstructing spatio-temporal kernels from simulated data. (a) A typical reconstruction of the interactions in a simulated 4 cell network at 1 ms
resolution. (b) Cross-validated log-likelihood (top, N=200) and correlation coefficients (bottom, N=10) between reconstructions and ground truth connectivity
for 10 cell networks. Error bars denote SEM.
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Fig. 3. Reconstructing spatio-temporal kernels from real data. (a) Typical reconstructions for a subset of cells calculated from two segments (red and black).
MAP estimates are shown in dark. ML estimates in light. (b) The cross-validated log-likelihood, as well as fraction of non-zero connections, as a function of
the hyperparameter b (top). The average correlation coefficient between MAP estimates from one segment and ML estimates from other segments (bottom).

The connections themselves have similar properties to those
found in rat hippocampal cells [22]. Neurons interact with
themselves with a refractory period followed by an excitatory
rebound, and other connections, though fairly rare, tend to be
weakly excitatory. Since ML estimates have no constraints on
the smoothness of kernels, neurons with low spike rates tend to
have especially noisy interactions. Using priors, these spurious
connections are set to zero. The spatio-temporal kernels and
connection weights, W , were well correlated across segments.
There was 88% agreement on the existence of connections
between segments, on average, and R = 0.72 correlation

between the weights themselves.
To assess the accuracy of our model in predicting spikes

we also used goodness-of-fit tests based on the time-rescaling
theorem [56]. In this test, the integral of the conditional
intensity function over each inter-spike interval (z), should
be drawn from a uniform distribution after rescaling (see [7],
[21] for more details). KS-tests for the best predicted neuron,
worst predicted neuron, and a typical neuron are shown in
figure 4a. The sorted KS-statistics (the supremum of the point-
wise differences between the CDF of z and the CDF for the
uniform distribution) for the entire ensemble are shown in 4b.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 9, 2008 at 14:17 from IEEE Xplore.  Restrictions apply.



A more general model

✤ Neurons are affected by other neurons

✤ Also affected via tuning curves by outside world

λi(t) = exp

�
N�

i=1

T�

∆t=1

Wi,∆tsi(t−∆t) +
K�

k=1

Vi,∆tvk(t−∆t)

�



Graphical version
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Spike Timing Dependent 
Plasticity
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Tuning curves are explained away



Countless future machine learning 
problems

✤ Find structure in generative model

✤ Meaningful priors

✤ Link to cognitive phenomena

✤ Reverse engineer learning rules
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