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What is Machine Learning?
Equipping Computers with Human Like Capabilities.

I Endow computers with the ability to “learn” from “data”.

I Present data from sensors, the internet, experiments.

I Expect computer to make “sensible” decisions.
I Traditionally categorized as:

I Supervised learning: classification, regression.
I Unsupervised learning: dimensionality reduction, clustering.
I Reinforcement learning: learning from delayed feedback.

Planning. Difficult stuff!
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History of Machine Learning (personal)
Rosenblatt to Vapnik

I Early connectionist research focused on models of the brain.
I Rosenblatt’s perceptron (Rosenblatt, 1962) based on simple

model of a neuron (McCulloch and Pitts, 1943) and a learning
algorithm.

I Later machine learning research focused on theoretical
foundations of such models and their capacity to learn
(Vapnik, 1998).

I Personal view: machine learning benefited greatly by
incorporating ideas from psychology, but not being afraid to
incorporate rigorous theory.
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Machine Learning Today
An extension of statistics?

I Early machine learning viewed with scepticism by statisticians.

I Modern machine learning and statistics interact to both
communities benefits.

I Personal view: statistics and machine learning are
fundamentally different. Statistics aims to provide a human
with the tools to analyze data. Machine learning wants to
replace the human in the processing of data.



Machine Learning Today
An extension of statistics?

I Early machine learning viewed with scepticism by statisticians.

I Modern machine learning and statistics interact to both
communities benefits.

I Personal view: statistics and machine learning are
fundamentally different. Statistics aims to provide a human
with the tools to analyze data. Machine learning wants to
replace the human in the processing of data.



Machine Learning Today
An extension of statistics?

I Early machine learning viewed with scepticism by statisticians.

I Modern machine learning and statistics interact to both
communities benefits.

I Personal view: statistics and machine learning are
fundamentally different. Statistics aims to provide a human
with the tools to analyze data. Machine learning wants to
replace the human in the processing of data.



Machine Learning Today
Mathematics and Bumblebees

I For the moment the two overlap strongly. But they are not
the same field!

I This summer school reflects that. ML has a lot still to learn
from CogSci.

I Mathematical formalisms of a problem are helpful, but they
can hide facts: i.e. the fallacy that “aerodynamically a bumble
bee can’t fly”. Clearly a limitation of the model rather than
fact.

I Mathematical foundations are still very important though:
they help us understand the capabilities of our algorithms.

I But we mustn’t restrict our ambitions to the limitations of
current mathematical formalisms. That is where humans give
inspiration.
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Statistics
What’s in a Name?

I Early statistics had great success with the idea of statistical
proof.

I Question: I computed the mean of these two tables of numbers
(a statistic). They are different. Does this “prove” anything?

I Answer: it depends on how the numbers are generated, how
many there are and how big the difference. Randomization is
important.

I Hypothesis testing: questions you can ask about your data are
quite limiting.

I This can have the affect of limiting science too.

I Many successes: crop fertilization, clinical trials, brewing,
polling.

I Many open questions: e.g. causality.



Early 20th Century Statistics

I Many statisticians were Edwardian English gentleman.

Figure: William Sealy Gosset in 1908



Outline

Motivation

Supervised Learning

Unsupervised Learning

Conclusions



Supervised Learning



Outline

Motivation

Supervised Learning
Classification
Regression
Error Functions

Unsupervised Learning
Clustering
Dimensionality Reduction
PCA

Conclusions



Classification

I We are given data set containing “inputs”, X, and “targets”, y.

I Each data point consists of an input vector xi ,: and a class
label, yi .

I For binary classification assume yi should be either 1 (yes) or
−1 (no).

I Input vector can be thought of as features.



Classification Examples

I Classifying hand written digits from binary images (automatic
zip code reading).

I Detecting faces in images (e.g. digital cameras).

I Who a detected face belongs to (e.g. Picasa).

I Classifying type of cancer given gene expression data.

I Categorization of document types (different types of news
article on the internet).



The Perceptron

I Developed in 1957 by Rosenblatt.

I Take a data point at, xi .

I Predict it belongs to a class, yi = 1 if
∑

j wjxi ,j + b > 0 i.e.

w>xi + b > 0. Otherwise assume yi = −1.



Perceptron-like Algorithm

1. Select a random data point i .

2. Ensure i is correctly classified by setting w = yixi .
I i.e. sign

(
w>xi,:

)
= sign

(
yix>i,:xi,:

)
= sign (yi ) = yi

3. Iterate: increment k and select a misclassified point, i .

4. Set w← w + ηyixi ,:.
I If η is large enough this will guarantee this point becomes

correctly classified.

5. Repeat until there are no misclassified points..



Perceptron Algorithm

I Iteration 1 data no 29

I w1 = 0, w2 = 0

I First Iteration

I Set weight vector to data
point.

I w = y29x29,:

I Select new incorrectly
classified data point.
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Perceptron Algorithm

I Iteration 2 data no 16

I w1 = 0.3519,
w2 = −0.6787

I Incorrect classification

I Adjust weight vector with
new data point.

I w← w + ηy16x16,:

I Select new incorrectly
classified data point.
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Perceptron Algorithm

I Iteration 3 data no 58

I w1 = −1.2143,
w2 = −1.0217

I Incorrect classification

I Adjust weight vector with
new data point.

I w← w + ηy58x58,:

I All data correctly
classified.
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Regression Examples

I Predict a real value, yi given some inputs xi .

I Predict quality of meat given spectral measurements (Tecator
data).

I Radiocarbon dating, the C14 calibration curve: predict age
given quantity of C14 isotope.

I Predict quality of different Go or Backgammon moves given
expert rated training data.



Linear Regression
Is there an equivalent learning rule for regression?

I Predict a real value y given x .
I We can also construct a learning rule for regression.

I Define our prediction

f (x) = mx + c.

I Define an error
∆yi = yi − f (xi ).



Updating Bias/Intercept

I c represents bias. Add portion of error to bias.

c → c + η∆yi .

∆yi = yi −mxi − c.

1. For +ve error, c and therefore f (xi ) become larger and error
magnitude becomes smaller.

2. For -ve error, c and therefore f (xi ) become smaller and error
magnitude becomes smaller.



Updating Slope

I m represents Slope. Add portion of error × input to slope.

m→ m + η∆yixi .

∆yi = yi −mxi − c.

1. For +ve error and +ve input, m becomes larger and f (xi )
becomes larger: error magnitude becomes smaller.

2. For +ve error and -ve input, m becomes smaller and f (xi )
becomes larger: error magnitude becomes smaller.

3. For -ve error and -ve slope, m becomes larger and f (xi )
becomes smaller: error magnitude becomes smaller.

4. For -ve error and +ve input, m becomes smaller and f (xi )
becomes smaller: error magnitude becomes smaller.



Linear Regression Example

I Iteration 1 m̂ = −0.3
ĉ = 1

I Present data point 4
I ∆y4 = (y4 − m̂x4 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx4∆y4

ĉ ← ĉ + η∆y4

I Updated values
m̂ = −0.25593 ĉ = 1.0175
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ĉ ← ĉ + η∆y4

I Updated values
m̂ = −0.25593 ĉ = 1.0175
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I Adjust m̂ and ĉ
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ĉ ← ĉ + η∆y4

I Updated values
m̂ = −0.25593 ĉ = 1.0175
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ĉ = 1

I Present data point 4
I ∆y4 = (y4 − m̂x4 − ĉ)
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0

1

2

3

4

0 1 2 3 4

y

x



Linear Regression Example

I Iteration 2
m̂ = −0.25593
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ĉ = 1.0358

I Present data point 10

I ∆y10 = (y10−m̂x10−ĉ)
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ĉ = 1.0358

I Present data point 10
I ∆y10 = (y10−m̂x10−ĉ)
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Linear Regression Example

I Iteration 4
m̂ = −0.085591
ĉ = 1.0617

I Present data point 7
I ∆y7 = (y7 − m̂x7 − ĉ)
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Linear Regression Example

I Iteration 4
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I Adjust m̂ and ĉ
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Linear Regression Example

I Iteration 4
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Linear Regression Example

I Iteration 5
m̂ = −0.050355
ĉ = 1.0749

I Present data point 4
I ∆y4 = (y4 − m̂x4 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx4∆y4

ĉ ← ĉ + η∆y4

I Updated values
m̂ = −0.024925 ĉ = 1.0849
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Linear Regression Example

I Iteration 5
m̂ = −0.050355
ĉ = 1.0749

I Present data point 4

I ∆y4 = (y4 − m̂x4 − ĉ)
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ĉ ← ĉ + η∆y4

I Updated values
m̂ = −0.024925 ĉ = 1.0849
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Linear Regression Example

I Iteration 5
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Linear Regression Example

I Iteration 5
m̂ = −0.050355
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Linear Regression Example

I Iteration 5
m̂ = −0.050355
ĉ = 1.0749

I Present data point 4
I ∆y4 = (y4 − m̂x4 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx4∆y4
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Linear Regression Example

I Iteration 6
m̂ = −0.024925
ĉ = 1.0849

I Present data point 5
I ∆y5 = (y5 − m̂x5 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx5∆y5

ĉ ← ĉ + η∆y5

I Updated values
m̂ = 0.00098511 ĉ = 1.0949
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Linear Regression Example

I Iteration 6
m̂ = −0.024925
ĉ = 1.0849

I Present data point 5

I ∆y5 = (y5 − m̂x5 − ĉ)
I Adjust m̂ and ĉ
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m̂ = 0.00098511 ĉ = 1.0949
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Linear Regression Example

I Iteration 6
m̂ = −0.024925
ĉ = 1.0849

I Present data point 5
I ∆y5 = (y5 − m̂x5 − ĉ)

I Adjust m̂ and ĉ
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ĉ ← ĉ + η∆y5

I Updated values
m̂ = 0.00098511 ĉ = 1.0949
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Linear Regression Example

I Iteration 6
m̂ = −0.024925
ĉ = 1.0849

I Present data point 5
I ∆y5 = (y5 − m̂x5 − ĉ)
I Adjust m̂ and ĉ
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Linear Regression Example

I Iteration 6
m̂ = −0.024925
ĉ = 1.0849

I Present data point 5
I ∆y5 = (y5 − m̂x5 − ĉ)
I Adjust m̂ and ĉ
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0

1

2

3

4

0 1 2 3 4

y

x



Linear Regression Example

I Iteration 7
m̂ = 0.00098511
ĉ = 1.0949

I Present data point 10
I ∆y10 = (y10−m̂x10−ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx10∆y10

ĉ ← ĉ + η∆y10

I Updated values
m̂ = 0.072529 ĉ = 1.1101
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Linear Regression Example

I Iteration 7
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I Adjust m̂ and ĉ

m̂← m̂ + ηx10∆y10
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Linear Regression Example

I Iteration 7
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Linear Regression Example

I Iteration 7
m̂ = 0.00098511
ĉ = 1.0949

I Present data point 10
I ∆y10 = (y10−m̂x10−ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx10∆y10
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Linear Regression Example

I Iteration 7
m̂ = 0.00098511
ĉ = 1.0949

I Present data point 10
I ∆y10 = (y10−m̂x10−ĉ)
I Adjust m̂ and ĉ
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Linear Regression Example

I Iteration 8 m̂ = 0.072529
ĉ = 1.1101

I Present data point 10
I ∆y10 = (y10−m̂x10−ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx10∆y10

ĉ ← ĉ + η∆y10

I Updated values
m̂ = 0.1282 ĉ = 1.122
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Linear Regression Example

I Iteration 8 m̂ = 0.072529
ĉ = 1.1101

I Present data point 10
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Linear Regression Example

I Iteration 8 m̂ = 0.072529
ĉ = 1.1101

I Present data point 10
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Linear Regression Example

I Iteration 8 m̂ = 0.072529
ĉ = 1.1101

I Present data point 10
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0

1

2

3

4

0 1 2 3 4

y

x



Linear Regression Example

I Iteration 8 m̂ = 0.072529
ĉ = 1.1101

I Present data point 10
I ∆y10 = (y10−m̂x10−ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx10∆y10

ĉ ← ĉ + η∆y10

I Updated values
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Linear Regression Example

I Iteration 9 m̂ = 0.1282
ĉ = 1.122

I Present data point 7
I ∆y7 = (y7 − m̂x7 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx7∆y7

ĉ ← ĉ + η∆y7

I Updated values
m̂ = 0.14634 ĉ = 1.1288
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Linear Regression Example

I Iteration 9 m̂ = 0.1282
ĉ = 1.122

I Present data point 7

I ∆y7 = (y7 − m̂x7 − ĉ)
I Adjust m̂ and ĉ
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Linear Regression Example

I Iteration 9 m̂ = 0.1282
ĉ = 1.122

I Present data point 7
I ∆y7 = (y7 − m̂x7 − ĉ)

I Adjust m̂ and ĉ
m̂← m̂ + ηx7∆y7
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Linear Regression Example

I Iteration 9 m̂ = 0.1282
ĉ = 1.122

I Present data point 7
I ∆y7 = (y7 − m̂x7 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx7∆y7
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Linear Regression Example

I Iteration 9 m̂ = 0.1282
ĉ = 1.122

I Present data point 7
I ∆y7 = (y7 − m̂x7 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx7∆y7

ĉ ← ĉ + η∆y7

I Updated values
m̂ = 0.14634 ĉ = 1.1288
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Linear Regression Example

I Iteration 10 m̂ = 0.14634
ĉ = 1.1288

I Present data point 10
I ∆y10 = (y10−m̂x10−ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx10∆y10

ĉ ← ĉ + η∆y10

I Updated values
m̂ = 0.18547 ĉ = 1.1372
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Linear Regression Example

I Iteration 10 m̂ = 0.14634
ĉ = 1.1288

I Present data point 10
I ∆y10 = (y10−m̂x10−ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx10∆y10

ĉ ← ĉ + η∆y10

I Updated values
m̂ = 0.18547 ĉ = 1.1372

0

1

2

3

4

0 1 2 3 4

y

x



Linear Regression Example

I Iteration 20 m̂ = 0.27764
ĉ = 1.1621

I Present data point 6
I ∆y6 = (y6 − m̂x6 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx6∆y6

ĉ ← ĉ + η∆y6

I Updated values
m̂ = 0.28135 ĉ = 1.1635
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Linear Regression Example

I Iteration 20 m̂ = 0.27764
ĉ = 1.1621

I Present data point 6
I ∆y6 = (y6 − m̂x6 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx6∆y6

ĉ ← ĉ + η∆y6

I Updated values
m̂ = 0.28135 ĉ = 1.1635
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Linear Regression Example

I Iteration 30 m̂ = 0.30249
ĉ = 1.1673

I Present data point 9
I ∆y9 = (y9 − m̂x9 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx9∆y9

ĉ ← ĉ + η∆y9

I Updated values
m̂ = 0.31119 ĉ = 1.1693
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Linear Regression Example

I Iteration 30 m̂ = 0.30249
ĉ = 1.1673

I Present data point 9
I ∆y9 = (y9 − m̂x9 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx9∆y9

ĉ ← ĉ + η∆y9

I Updated values
m̂ = 0.31119 ĉ = 1.1693
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Linear Regression Example

I Iteration 40 m̂ = 0.33551
ĉ = 1.1754

I Present data point 10
I ∆y10 = (y10−m̂x10−ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx10∆y10

ĉ ← ĉ + η∆y10

I Updated values
m̂ = 0.33503 ĉ = 1.1753
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Linear Regression Example

I Iteration 40 m̂ = 0.33551
ĉ = 1.1754

I Present data point 10
I ∆y10 = (y10−m̂x10−ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx10∆y10

ĉ ← ĉ + η∆y10

I Updated values
m̂ = 0.33503 ĉ = 1.1753
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Linear Regression Example

I Iteration 50 m̂ = 0.34126
ĉ = 1.1763

I Present data point 8
I ∆y8 = (y8 − m̂x8 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx8∆y8

ĉ ← ĉ + η∆y8

I Updated values
m̂ = 0.3439 ĉ = 1.177
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Linear Regression Example

I Iteration 50 m̂ = 0.34126
ĉ = 1.1763

I Present data point 8
I ∆y8 = (y8 − m̂x8 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx8∆y8

ĉ ← ĉ + η∆y8

I Updated values
m̂ = 0.3439 ĉ = 1.177
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Linear Regression Example

I Iteration 60 m̂ = 0.34877
ĉ = 1.1775

I Present data point 2
I ∆y2 = (y2 − m̂x2 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx2∆y2

ĉ ← ĉ + η∆y2

I Updated values
m̂ = 0.34621 ĉ = 1.1757
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Linear Regression Example

I Iteration 60 m̂ = 0.34877
ĉ = 1.1775

I Present data point 2
I ∆y2 = (y2 − m̂x2 − ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx2∆y2

ĉ ← ĉ + η∆y2

I Updated values
m̂ = 0.34621 ĉ = 1.1757

0

1

2

3

4

0 1 2 3 4

y

x



Linear Regression Example

I Iteration 70 m̂ = 0.34207
ĉ = 1.1734

I Present data point 10
I ∆y10 = (y10−m̂x10−ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx10∆y10

ĉ ← ĉ + η∆y10

I Updated values
m̂ = 0.34088 ĉ = 1.1732
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Linear Regression Example

I Iteration 70 m̂ = 0.34207
ĉ = 1.1734

I Present data point 10
I ∆y10 = (y10−m̂x10−ĉ)
I Adjust m̂ and ĉ

m̂← m̂ + ηx10∆y10

ĉ ← ĉ + η∆y10

I Updated values
m̂ = 0.34088 ĉ = 1.1732
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Basis Functions
Nonlinear Regression

I Problem with Linear Regression—x may not be linearly related
to y.

I Potential solution: create a feature space: define φ(x) where
φ(·) is a nonlinear function of x.

I Model for target is a linear combination of these nonlinear
functions

f (x) =
K∑

j=1

wjφj(x) (1)



Quadratic Basis

I Basis functions can be global. E.g. quadratic basis:

[1, x , x2]
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φ
(x
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x

φ(x) = 1

Figure: A quadratic basis.
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Quadratic Basis

I Basis functions can be global. E.g. quadratic basis:
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Figure: A quadratic basis.



Functions Derived from Quadratic Basis

f (x) = w1 + w2x + w3x2
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Figure: Function from quadratic basis with weights w1 = 0.87466,
w2 = −0.38835, w3 = −2.0058 .



Functions Derived from Quadratic Basis

f (x) = w1 + w2x + w3x2
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Figure: Function from quadratic basis with weights w1 = −0.35908,
w2 = 1.2274, w3 = −0.32825 .



Functions Derived from Quadratic Basis

f (x) = w1 + w2x + w3x2
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Figure: Function from quadratic basis with weights w1 = −1.5638,
w2 = −0.73577, w3 = 1.6861 .



Radial Basis Functions

I Or they can be local. E.g. radial (or Gaussian) basis

φj(x) = exp
(
− (x−µj )
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φ1(x) = e−2(x+1)2

Figure: Radial basis functions.
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Radial Basis Functions

I Or they can be local. E.g. radial (or Gaussian) basis
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Figure: Radial basis functions.



Functions Derived from Radial Basis

f (x) = w1e−2(x+1)2
+ w2e−2x2

+ w3e−2(x−1)2

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

f
(x

)

x

Figure: Function from radial basis with weights w1 = −0.47518,
w2 = −0.18924, w3 = −1.8183 .



Functions Derived from Radial Basis

f (x) = w1e−2(x+1)2
+ w2e−2x2

+ w3e−2(x−1)2
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Figure: Function from radial basis with weights w1 = 0.50596,
w2 = −0.046315, w3 = 0.26813 .



Functions Derived from Radial Basis

f (x) = w1e−2(x+1)2
+ w2e−2x2

+ w3e−2(x−1)2
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Figure: Function from radial basis with weights w1 = 0.07179,
w2 = 1.3591, w3 = 0.50604 .



Nonlinear Regression Example

I Iteration 1
I w1 = 0.13018,

w2 = −0.11355,
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I Updated values
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I Updated values
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ŵ← ŵ + ηφ10∆y10

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

y

x



Nonlinear Regression Example

I Iteration 14
I w1 = 0.62833,

w2 = −0.4575,
w3 = −1.252

I Present data point 2
I ∆y2 = y2 − φ>2 w
I Adjust ŵ
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I Updated values
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ŵ← ŵ + ηφ4∆y4

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

y

x



Nonlinear Regression Example

I Iteration 18
I w1 = 0.77019,

w2 = −0.3832,
w3 = −1.8175

I Present data point 4
I ∆y4 = y4 − φ>4 w
I Adjust ŵ
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ŵ← ŵ + ηφ8∆y8

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

y

x



Nonlinear Regression Example

I Iteration 500
I w1 = 0.94178,

w2 = −0.49879,
w3 = −1.9209

I Present data point 5
I ∆y5 = y5 − φ>5 w
I Adjust ŵ
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Mathematical Interpretation

I What is the mathematical interpretation?
I There is a cost function.
I It expresses mismatch between your prediction and reality.

E (w) =
n∑

i=1

 K∑
j=1

wjφj(xi )− yi

2

I This is known as the sum of squares error.
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I There is a cost function.
I It expresses mismatch between your prediction and reality.

E (w) =
n∑

i=1

(
w>φi − yi

)2

I This is known as the sum of squares error.
I Defining φi = [φ1(xi ), . . . , φK (xi )]>.



Learning is Optimization

I Learning is minimization of the cost function.

I At the minima the gradient is zero.

I Gradient of error function:

dE (w)

dw
= −2

n∑
i=1

φi

(
yi −w>φi

)



Learning is Optimization

I Learning is minimization of the cost function.

I At the minima the gradient is zero.

I Gradient of error function:

dE (w)

dw
= −2

n∑
i=1

φi∆yi

I Where ∆yi =
(
yi −w>φi

)
.



Minimization via Gradient Descent

I One way of minimizing is steepest descent.

I Initialize algorithm with w.

I Compute gradient of error function, dE(w)
dw .

I Change w by moving in steepest downhill direction.

w← w − ηdE (w)

dw
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Figure: Steepest descent on a quadratic error surface.
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Figure: Steepest descent on a quadratic error surface.
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Figure: Steepest descent on a quadratic error surface.
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Figure: Steepest descent on a quadratic error surface.
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Figure: Steepest descent on a quadratic error surface.
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Figure: Steepest descent on a quadratic error surface.
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Modern View of Error Functions

I Error function has a probabilistic interpretation (maximum
likelihood).

I Error function is an actual loss function that you want to
minimize (empirical risk minimization).

I For these interpretations probability and optimization theory
become important.

I Much of the last 15 years of machine learning research has
focused on probabilistic interpretations or clever relaxations of
difficult objective functions.



Important Concepts Not Covered

I Optimization methods.
I Second order methods, conjugate gradient, quasi-Newton and

Newton.
I Effective heuristics such as momentum.

I Local vs global solutions.
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Clustering

I Divide data into discrete groups according to characteristics.
I For example different animal species.
I Different political parties.

I Determine the allocation to the groups and (harder) number
of different groups.



K -means Clustering
An Algorithm

I Require: Set of K cluster centers & assignment of each point
to a cluster.

I Initialize cluster centers as data points.
I Assign each data point to nearest cluster center.
I Update each cluster center by setting it to the mean of

assigned data points.



Objective Function

I This minimizes the objective:

K∑
j=1

∑
i allocated to j

(yi ,: − µj ,:)
> (yi ,: − µj ,:)

I i.e. it minimizes the sum of Euclidean squared distances
between points and their associated centers.

I The minimum is not guaranteed to be global or unique.
I This objective is a non-convex optimization problem.



K -means Clustering

I K -means clustering.
I Data set to be

analyzed. Initialize
cluster centers.
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K -means Clustering

I K -means clustering.
I Allocate each point to

the cluster with the
nearest center
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K -means Clustering

I K -means clustering.
I Update each center by

setting to the mean of
the allocated points.
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I K -means clustering.
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K -means Clustering

I K -means clustering.
I Update each center by

setting to the mean of
the allocated points.
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K -means Clustering

I K -means clustering.
I Allocate each data

point to the nearest
cluster center.
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K -means Clustering

I K -means clustering.
I Allocation doesn’t

change so stop.
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Other Clustering Approaches

I Spectral clustering (Shi and Malik, 2000; Ng et al., 2002).
I Allows clusters which aren’t convex hulls.

I Dirichlet processes
I A probabilistic formulation for a clustering algorithm that is

non-parameteric.
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MATLAB Demo
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Low Dimensional Manifolds

Pure Rotation is too Simple

I In practice the data may undergo several distortions.

I e.g. digits undergo ’thinning’, translation and rotation.

I For data with ’structure’:

I we expect fewer distortions than dimensions;

I we therefore expect the data to live on a lower dimensional
manifold.

I Conclusion: deal with high dimensional data by looking for
lower dimensional non-linear embedding.



Notation

q— dimension of latent/embedded space
p— dimension of data space
n— number of data points

data matrix, Y = [y1,:, . . . , yn,:]
T = [y:,1, . . . , y:,p] ∈ <n×p

latent variables, X = [x1,:, . . . , xn,:]
T = [x:,1, . . . , x:,q] ∈ <n×q

mapping matrix, W ∈ <p×q

centering matrix, H = I− n−111> ∈ <n×n



Reading Notation

I ai ,: is a vector from the ith row of a given matrix A.

I a:,j is a vector from the jth row of a given matrix A.

I X and Y are design matrices.
I If we assume that the data matrix, Y, is centered (i.e. has

mean zero) then
I Sample covariance given by

S = n−1Y>Y.



Data Representation

I Think of the data represented by interpoint distances.

di ,j = ‖yi ,: − yj ,:‖2 =

√
(yi ,: − yj ,:)

T (yi ,: − yj ,:)

I This is the Euclidean distance between any two data points.

I For any data set can display as a matrix, D, where i , jth
element is given by di ,j .



Interpoint Distances for Rotated Sixes
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Figure: Interpoint distances for the rotated six data.



Multidimensional Scaling

I We want to find a low dimensional representation of the data.

I Find a configuration of points, X, such that each

δi ,j = ‖xi ,: − xj ,:‖2

closely matches the corresponding di ,j in the distance matrix.

I Need an objective function for matching the matrix of latent
distances, which we denote ∆, to the matrix of observed
distances, D.



Feature Selection

I A possible error function:
I An entrywise L1 norm on difference between squared distances

E (X) =
n∑

i=1

n∑
j=1

∣∣d2
i,j − δ2

i,j

∣∣ .
I A possible dimensionality reduction algorithm:

I Retain q columns of Y which minimize the error.

I To minimize E (Y) we need to retain for X the columns of Y
that have the largest variance.



Feature Selection
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reconstructed with 1000 dimensions.



Considering Rotations

I Extracting only columns of data is a very simple approach to
dimensionality reduction.

I We can extend our approach by considering rotations of the
data before we take the columns.
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Which Rotation?

I We need the rotation that will minimise residual error.

I Discard direction with maximum variance.

I Error is then given by the sum of residual variances.

E (X) ∝
p∑

k=q+1

σ2
k .

I Rotations of data matrix do not effect this analysis.
I Algorithm:

I Rotate data to find directions of maximum variance.
I Retain these directions for the low dimensional representation.



Rotation Reconstruction from Latent Space
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Principal Component Analysis

I How do we find these directions?

I Rotate to find directions in data with maximal variance.

I This is known as PCA (Hotelling, 1933).

I Rotate data to extract directions of maximum variance.

I Do this by diagonalizing the sample covariance matrix

S = n−1Y>Y.



Principal Component Analysis

I Find a direction in the data, x:,1 = Yr1, for which variance is
maximized.

r1 =argmaxr1
var (Yr1)

subject to: r>1 r1 = 1

I Can rewrite in terms of sample covariance

var (x:,1) = n−1 (Yr1)>Yr1 = r>1

(
n−1Y>Y

)
︸ ︷︷ ︸

sample covariance

r1 = r>1 Sr1



Lagrangian

I Solution via constrained optimisation (Lagrange multipliers):

L (r1, λ1) = r>1 Sr1 + λ1

(
1− r>1 r1

)
I Gradient with respect to r1

dL (r1, λ1)

dr1
= 2Sr1 − 2λ1r1

rearrange to form
Sr1 = λ1r1.

Which is recognised as an eigenvalue problem.

I Further directions can also be shown to be eigenvectors of the
covariance.



Conclusions

I Machine learning has slightly different roots from statistics.

I Has inspiration from psychology and computer science.

I Modern machine learning is more mathematically motivated.

I Many of the modern challenges are strongly related to
statistics.

I Personal view: we can benefit greatly by more interaction with
cognitive science.
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Outline

PCA Further Directions



Lagrange Multiplier

I Recall the gradient,

dL (r1, λ1)

dr1
= 2Sr1 − 2λ1r1 (2)

to find λ1 premultiply (2) by r>1 and rearrange giving

λ1 = r>1 Sr1.

I Maximum variance is therefore necessarily the maximum
eigenvalue of S.

I This is the first principal component.



Further Directions

I Find orthogonal directions to earlier extracted directions with
maximal variance.

I Orthogonality constraints, for j < k we have

r>j rk = 0 r>k rk = 1

I Lagrangian

L (rk , λk ,γ) = r>k Srk + λk

(
1− r>k rk

)
+

k−1∑
j=1

γjr
>
j rk

d (rk , λk)

drk
= 2Srk − 2λkrk +

k−1∑
j=1

γj rj



Further Eigenvectors

I Gradient of Lagrangian:

dL (rk , λk)

drk
= 2Srk − 2λkrk +

k−1∑
j=1

γj rj (3)

I Premultipling (3) by ri with i < k implies

γi = 0

which allows us to write

Srk = λkrk .

I Premultiplying (3) by rk implies

λk = r>k Srk .

I This is the kth principal component.



Principal Coordinates Analysis

I The rotation which finds directions of maximum variance is
the eigenvectors of the covariance matrix.

I The variance in each direction is given by the eigenvalues.

I Problem: working directly with the sample covariance, S,
may be impossible.

I For example: perhaps we are given distances between data
points, but not absolute locations.

I No access to absolute positions: cannot compute original
sample covariance.



An Alternative Formalism

I Matrix representation of eigenvalue problem for first q
eigenvectors.

Y>YRq = RqΛq Rq ∈ <p×q (4)

I Premultiply by Y:

YY>YRq = YRqΛq

I Postmultiply by Λ
− 1

2
q

YY>YRqΛ
− 1

2
q = YRqΛqΛ

− 1
2

q
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Uq Diagonalizes the Inner Product Matrix

I Need to prove that Uq are eigenvectors of inner product
matrix.

U>q YY>Uq = Λ
− 1

2
q R>q Y>YY>YRqΛ

− 1
2

q

I Full eigendecomposition of sample covariance

Y>Y = RΛR>

I Implies that (
Y>Y

)2
= RΛR>RΛR> = RΛ2R>.
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I Product of the first q eigenvectors with the rest,

R>Rq =

[
Iq
0

]
∈ <p×q

where we have used Iq to denote a q × q identity matrix.

I Premultiplying by eigenvalues gives,

ΛR>Rq =

[
Λq

0

]
I Multiplying by self transpose gives



Uq Diagonalizes the Inner Product Matrix

I Need to prove that Uq are eigenvectors of inner product
matrix.

U>q YY>Uq = Λ
− 1

2
q R>q RΛ2R>RqΛ

− 1
2

q

I Product of the first q eigenvectors with the rest,

R>Rq =

[
Iq
0

]
∈ <p×q

where we have used Iq to denote a q × q identity matrix.

I Premultiplying by eigenvalues gives,

ΛR>Rq =

[
Λq

0

]

I Multiplying by self transpose gives



Uq Diagonalizes the Inner Product Matrix

I Need to prove that Uq are eigenvectors of inner product
matrix.

U>q YY>Uq = Λ
− 1

2
q R>q RΛ2R>RqΛ

− 1
2

q

I Product of the first q eigenvectors with the rest,

R>Rq =

[
Iq
0

]
∈ <p×q

where we have used Iq to denote a q × q identity matrix.

I Premultiplying by eigenvalues gives,

ΛR>Rq =

[
Λq

0

]
I Multiplying by self transpose gives

R>q RΛ2R>Rq = Λ2
q



Uq Diagonalizes the Inner Product Matrix

I Need to prove that Uq are eigenvectors of inner product
matrix.

U>q YY>Uq = Λ
− 1

2
q

[
R>q RΛ2R>Rq

]
Λ
− 1

2
q

I Product of the first q eigenvectors with the rest,

R>Rq =

[
Iq
0

]
∈ <p×q

where we have used Iq to denote a q × q identity matrix.

I Premultiplying by eigenvalues gives,

ΛR>Rq =

[
Λq

0

]
I Multiplying by self transpose gives

R>q RΛ2R>Rq = Λ2
q



Uq Diagonalizes the Inner Product Matrix

I Need to prove that Uq are eigenvectors of inner product
matrix.

U>q YY>Uq = Λ
− 1

2
q

[
R>q RΛ2R>Rq

]
Λ
− 1

2
q

I Product of the first q eigenvectors with the rest,

R>Rq =

[
Iq
0

]
∈ <p×q

where we have used Iq to denote a q × q identity matrix.

I Premultiplying by eigenvalues gives,

ΛR>Rq =

[
Λq

0

]
I Multiplying by self transpose gives

R>q RΛ2R>Rq = Λ2
q



Uq Diagonalizes the Inner Product Matrix

I Need to prove that Uq are eigenvectors of inner product
matrix.

U>q YY>Uq = Λ
− 1

2
q Λ2

qΛ
− 1

2
q

I Product of the first q eigenvectors with the rest,

R>Rq =

[
Iq
0

]
∈ <p×q

where we have used Iq to denote a q × q identity matrix.

I Premultiplying by eigenvalues gives,

ΛR>Rq =

[
Λq

0

]
I Multiplying by self transpose gives

R>q RΛ2R>Rq = Λ2
q



Uq Diagonalizes the Inner Product Matrix

I Need to prove that Uq are eigenvectors of inner product
matrix.

U>q YY>Uq = Λq

I Product of the first q eigenvectors with the rest,

R>Rq =

[
Iq
0

]
∈ <p×q

where we have used Iq to denote a q × q identity matrix.

I Premultiplying by eigenvalues gives,

ΛR>Rq =

[
Λq

0

]
I Multiplying by self transpose gives

R>q RΛ2R>Rq = Λ2
q



Uq Diagonalizes the Inner Product Matrix

I Need to prove that Uq are eigenvectors of inner product
matrix.

YY>Uq = UqΛq

I Product of the first q eigenvectors with the rest,

R>Rq =

[
Iq
0

]
∈ <p×q

where we have used Iq to denote a q × q identity matrix.

I Premultiplying by eigenvalues gives,

ΛR>Rq =

[
Λq

0

]
I Multiplying by self transpose gives

R>q RΛ2R>Rq = Λ2
q



Equivalent Eigenvalue Problems

I Two eigenvalue problems are equivalent. One solves for the
rotation, the other solves for the location of the rotated
points.

I When p < n it is easier to solve for the rotation, Rq. But
when p > n we solve for the embedding (principal coordinate
analysis).

I In MDS we may not know Y, cannot compute Y>Y from
distance matrix.

I Can we compute YY> instead?



The Covariance Interpretation

I n−1Y>Y is the data covariance.

I YY> is a centred inner product matrix.

I Also has an interpretation as a covariance matrix (Gaussian
processes).

I It expresses correlation and anti correlation between data
points.

I Standard covariance expresses correlation and anti correlation
between data dimensions.



Distance to Similarity: A Gaussian Covariance
Interpretation

I Translate between covariance and distance.

I Consider a vector sampled from a zero mean Gaussian
distribution,

z ∼ N (0,K) .

I Expected square distance between two elements of this vector
is

d2
i,j =

〈
(zi − zj)

2
〉

d2
i,j =

〈
z2
i

〉
+
〈
z2
j

〉
− 2 〈zizj〉

under a zero mean Gaussian with covariance given by K this is

d2
i,j = ki,i + kj,j − 2ki,j .

Take the distance to be square root of this,

di,j = (ki,i + kj,j − 2ki,j)
1
2 .



Standard Transformation

I This transformation is known as the standard transformation
between a similarity and a distance (Mardia et al., 1979, pg 402).

I If the covariance is of the form K = YY> then ki ,j = y>i ,:yj ,:

and

di ,j =
(
y>i ,:yi ,: + y>j ,:yj ,: − 2y>i ,:yj ,:

) 1
2

= |yi ,: − yj ,:|2 .

I For other distance matrices this gives us an approach to
covert to a similarity matrix or kernel matrix so we can
perform classical MDS.
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