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Machine learning: structure of the field

• Learning problems encountered either in technology or abstracted and 
simplified from biology/cognitive science

• Learning problems formalised as mathematical problems. 
– Formal definitions

– Formal validation criteria so that different solutions can be compared

– Public datasets, challenge problems

• Formalisation acts as an interface between engineers/computer 
scientists/mathematicians and … the study of learning. Research can 
proceed by considering the formalised problem. 

• Study of formalised learning problems develops 
– algorithms + proofs of algorithm performance + technology  

– elaborations of problem definition occurs according to mathematical 
aesthetics/technological requirements

• Original cognitive science motivations can become a little forgotten… 



Example: Supervised Learning

Given:  an i.i.d. sample of examples x1 , … xN and a corresponding set 

y1 , … , yN of labels from some unknown probability distribution over (X,Y), 

and a loss function L:X,Y -> R+

Find: a classification rule f : X -> Y with low expected loss on future samples 
from the same distribution. 

Types of question: 

– How does expected loss vary with size of sample (N), set of classification rules 
considered, loss function, etc.

– Efficient algorithms for finding f

– Variations of the problem (on-line mode, learning with privileged information, 
etc)

Is this related to cognitive science?   Yes … but distantly



Reinforcement Learning 

A family of learning algorithms that implement operant 
conditioning: learning from rewards and punishments. 

RL algorithms learn to optimise cumulative reward over the 
medium term; can learn to take unpleasant preparatory 
actions that lead to rewards later.  

RL can be viewed as a natural computational implementation of 
Thorndike’s ‘Law of Effect’ and of the folk psychology of 
learning from rewards and punishments.



Reinforcement Learning: motivating the model

Folk theory of training by reward and punishment: animals will learn to 
behave so as to seek rewards and avoid punishments.

Thorndike (1911) “Law of Effect”

“Of several responses made to the same situation, those which are 
accompanied or closely followed by satisfaction to the animal will, other 
things being equal, be more firmly connected with the situation, so that, 
when it recurs, they will be more likely to recur; those which are 
accompanied or closely followed by discomfort to the animal will, other 
things being equal, have their connections with that situation weakened, 
so that, when it recurs, they will be less likely to occur.”



Reinforcement Learning: motivating the model

Early psychologists seemed so sure:

“Just as a sculptor carves a statue out of a block of marble, so does 
acquisition carve an activity out of a mass of random movements.”

Lloyd Morgan (1896)

“Formally the crab, fish, turtle, dog, cat, monkey, and baby have very similar 
intellects and characters. All are systems of connections subject to change 
by the laws of exercise and effort.”

Thorndike (1911)

“Learned behavior is constructed by a continual process of differential 
reinforcement from undifferentiated behavior.”

Skinner (1953)



RL: Intuitions

Formalise “learning from rewards and punishments”:

“Situations” or states:  a finite number of these s1 … sn

Actions: finite number of actions possible in each state. 

Rewards/costs: each time agent performs an action, the agent receives an 
immediate payoff that depends only on the state and the action 
performed. 

State transitions: Performing an action takes agent to another state. 



RL: Markov Decision Processes

States: s,        observed by agent

Actions: a,      chosen by agent

Payoffs: r,      received by agent

Transition probability distribution for each state,-action pair:   P( 
s’ | s, a)

Markov property: Next state depends only on current state and 
action performed

Immediate payoff:    r( s, a )

We suppose that the process terminates. 



An example MDP: Robot Golf

State:  Position of the ball

Actions: Settings for “stroke” by robot

Immediate payoff: each stroke costs 1

Aim: Minimise expected cost to get ball into hole. 



Three types of control

Look-ahead (multiple rollouts):   plan a sequence of actions.  
Explore tree of possible sequences of actions to find a good 
route

Policy:  For each location on golf course, have a stored action. 

Value function (cost-to-go): Have a map of the golf course 
marked with the number of shots required to go to the hole. 

Look ahead only one shot, to get to the next location with 
lowest cost-to-go. 



Choosing actions: by look-ahead search

Computationally intensive

Needs a good model of effects of actions

No memory or learning



Choosing actions: by stored policy

Store a map of recommended shot for each position on 
course

In current state, look up the shot. 



Choosing actions: by stored value function 
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Value of state is no. of shots needed from that state

Look-ahead one shot and pick state of lowest value



Optimising policy and values together

In current state: 

Can I see a feasible shot that gives a lower value than the 
current state value? 

- adjust the state value downwards

Can I see an action that leads to a better position than the 
current policy action?

- replace the policy action with a new action



Q-Learning

Even simpler, and needs no model of effects of actions. 

Store a function Q(s,a) for each state-action pair.

Q(s,a) is (after learning) an estimate of the number of shots, 
starting in state s, taking shot a, then following policy 
thereafter. 

“Policy” is:     policy( s ) = argmina Q(s,a)

“Value” is:     value( s ) = mina Q(s,a)

Everything in one (rather large) stored table 



Q-Learning

Learning:  

Can use a model … but can also use the world as its own 
model

“Atom of experience” :  *s  a  s’ r+

Learning update: 

Q(s,a)  r + minb Q( s, b )

All operations on one stored table: no memory, no predictions. 



Developments in RL

• Generalisation of value functions over large, continuous state 
spaces 

• Partially observable Markov decision processes (POMDPs), in 
which current state is uncertain

• New families of algorithms:  stochastic gradient and natural 
gradient 

• Complexity analysis

• Analyses of exploration

• Hierarchical extensions (turns out to be hard)

• New probabilistic approaches for control…



Successes of RL

• Games

– Checkers

– Backgammon

– Chess

– Go

• Algorithms

– New approaches to old problems in control

• New approaches to learning by imitation

– Inverse reinforcement learning



Limitations of RL

• Hierarchical skills 

• Competences to achieve multiple goals

• Forming new representations

• Slow



Plausibility of RL

• Satisfies same folk intuitions as radical behaviourism

• Robot designer specifies performance criterion: RL (hopefully) 
learns to achieve it

• Biologically motivated: an honest implementation of the “law 
of effect”, with improvements

– Learning in continuous time

– Whole family of alternative mental representations and 
learning algorithms

• A natural “upgrade path” ? 

– Simple organisms could use Q-learning, then get an 
evolutionary upgrade to predictive models and forward 
planning??



Part 2: RL in Animals

• Where animal reinforcement learning (conditioning) 
experiments go wrong: instinctive drift

• Extremes of innate behaviour:  Cuckoos and their hosts

• Extremes of innate behaviour:  the Megapodes



Conditioning Experiments

Skinner Box

Simple environment

“Reinforcement 
schedule”

Simple responses

Reinforcement 
studied in its purest 
form? 



Classical Conditioning

Conditioned 

Stimulus

Unconditioned 

Stimulus

Response

precedes

instinctive
learned



Keller and Marian Breland

• Research students of B.F. Skinner
in late 1940s

• Left before obtaining their PhDs to
found an animal training company,
using the new science of operant 
conditioning.

• Trained more than sixty species for 
novelty marketing displays, aquaria and 
zoos, movies and entertainment, 
military missions…

• After 10 years experience, they
changed their views on operant
conditioning theory.

Keller Breland with an otter



Breland and Breland (1951)

Novelty animal acts: 

“The success of these acts led to the development

of a trained pig show, "Priscilla the Fastidious Pig,"

whose routine included turning on the radio, eating

breakfast at a table, picking up the dirty clothes

and putting them in a hamper, running the vacuum

cleaner around, picking out her favorite feed from

those of her competitors, and taking part in a quiz

program, answering "Yes" or "No" to questions

put by the audience, by lighting up the appropriate

signs.”



„The Misbehavior of Organisms‟ (1961)

“The last instance we shall relate in detail is one of the most 
annoying and baffling for a good behaviorist. Here a pig was 
conditioned to pick up large wooden coins and deposit them 
in a large "piggy bank." The coins were placed several feet 
from the bank and the pig required to carry them to the bank 
and deposit them, usually four or five coins for one 
reinforcement. (Of course, we started out with one coin, near 
the bank.) “



The Misbehavior of Organisms

“Pigs condition very rapidly, they have no trouble taking ratios, 
they have ravenous appetites (naturally), and in many ways 
are among the most tractable animals we have worked with. 
However, this particular problem behavior developed in pig 
after pig, usually after a period of weeks or months, getting 
worse every day. “

“At first the pig would eagerly pick up one dollar, carry it to the 
bank, run back, get another; carry it rapidly and neatly, and so 
on, until the ratio was complete. “



The Misbehavior of Organisms

Thereafter, over a period of weeks the behavior would become 
slower and slower. He might run over eagerly for each dollar, 
but on the way back, instead of carrying the dollar and 
depositing it simply and cleanly, he would repeatedly drop it, 
root it, drop it again, root it along the way, pick it up, toss it 
up in the air, drop it, root it some more, and so on. 



Rooting

Pigs find food by 
rooting – digging 
with their noses, 
and finding food by 
smell and touch.

To obtain a food reward by picking up a wooden object and 
then discarding it into a hole is contrary to their natural 
method of feeding. 



The Misbehavior of Organisms

“We thought this behavior might simply be the dilly-dallying of 
an animal on a low drive. However, the behavior persisted 
and gained in strength in spite of a severely increased drive -
he finally went through the ratios so slowly that he did not 
get enough to eat in the course of a day. Finally it would take 
the pig about 10 minutes to transport four coins a distance of 
about 6 feet. “

“This problem behavior developed repeatedly in successive 
pigs.” 



Instinctive Drift

“The examples listed we feel represent a clear and utter failure 
of conditioning theory…..the animal simply does not do what 
he has been conditioned to do.” 

“….wherever an animal has strong instinctive behaviors in the 
area of the conditioned response, after continued running the 
organism will drift toward the instinctive behavior to the 
detriment of the conditioned behavior… “



Questions

• Can we propose a more adequate theory of animal learning 
than one which is a combination of classical and operant 
conditioning?

• Why is instinctive drift so slow? 

– seems biologically useless if so slow

• Why hasn’t instinctive drift been more intensively studied?



Discussion

• RL can produce a powerful illusion of 

plausibility

– paradigmatic example is to foraging for small 

morsels of food

– in foraging, visible rewards correspond to 

animal‟s internal subjective rewards

– easy to forget that RL rewards are subjective



Example 2: Brood parasitism

The following example is an intricate behavioural repertoire in 
which rewards are hard to identify.

As evolutionarily aware observers, we can understand what is 
happening; but the animals don’t.

Point of example:  

– Types of learning not naturally explainable with rewards

– Evolution puts strong constraints on learning



Brood parasitism: the Common Cuckoo

Cuckoo’s egg in a reed-warbler’s   
nest. 

Cuckoo steals one egg in its beak, lays 
one to replace it, in less than 10 
seconds, usually unobserved.

Cuckoo usually hatches first.

Immediately, while still blind, it 
ejects the host’s eggs or chicks. 

Hosts watch helplessly: they have 
no behavioural response. 



Brood Parasitism

Hosts feed the cuckoo chick, 
which grows to 8 times their 
weight. 

Cuckoo chicks take longer than 
host chicks to fledge: e.g. a pair of 
reed warblers may spend nearly 4 
weeks longer rearing a cuckoo 
chick than they would for their 
own. 

Hosts rarely desert the cuckoo 
chick: only one recent report…



95 bird species are obligate brood parasites

Sparrow feeding 

a shiny cowbird 

fledgling. 

5 major groups 

of brood 

parasites 

worldwide. 

Intense co-evolutionary `arms races‟ between brood 

parasites and their hosts

Similar phenomena among the different groups



The Dangers of Theory 

“It is wonderful to observe what great apparent delight the 
birds show when they see a female Cuckoo approach their 
abode....they seem quite beside themselves for joy. The 
little Wren...immediately quits its nest on the approach of 
the Cuckoo, as though to make room to enable her to lay 
her egg more commodiously. Meanwhile she hops round 
her with such expressions of delight that her husband at 
length joins her, and both seem lavish in their thanks for 
the honour which the great bird confers upon them by 
selecting their nest for its own use.”

Bechstein, quoted in 1865



We consider only the hosts’ defences 

Almost all hosts: 

– evolve defences against parasitic eggs

– …but rear the parasitic chicks.  

Why?

For host, more valuable to get rid of cuckoo egg than to reject the 
cuckoo chick…

But rejecting the chick at any stage enables hosts to conserve 
resources and possibly to re-nest. 

An ability to reject a cuckoo chick would be advantageous enough 
to spread rapidly through host population.



Host defences against parasitic eggs

• Attack cuckoos on sight near nest.

• Defensive nests, with narrow entrance tunnels

• Recognise parasitic egg, and 

– eject it from nest

– smash it

– re-line nest, burying all the eggs 

– abandon nest 



How does host recognise parasitic egg?

Surprisingly, host does not recognise the ‘odd one out’ among 
the eggs. 

Classic experiments* show that hosts imprint on the appearance 
of the first egg they lay.

Host rejects subsequent eggs that are not sufficiently similar to 
the first (imprinted) egg.

* described in Cuckoos, Cowbirds, and other Cheats by N.B. Davies, 2000, Poyser



Why do hosts not imprint on their chicks also?

Lotem (1993)* noted that

– a host’s first egg is her own

but

– a host’s first hatched chick may well be a cuckoo, 
because cuckoo eggs hatch quickly (short incubation 
period).

If a host imprints on a cuckoo chick, then afterwards it would 
reject its own chicks and raise only cuckoos…

Host birds do not evolve ability to reject cuckoo chicks because 
“mental module” (imprinting) that is most available to use 
would cause them to reject their own chicks too frequently.

* Lotem, A., Nature 1993, 362, pp743-744 



* Shizuka and Lyon, Nature 2009 

Confirmation: Intra-species rejection of chicks*

Many birds drop eggs in each 

other‟s nests: intra-specific 

brood parasitism. 

Chicks of the same species 

look similar – yet parent birds 

can reject chicks that are not 

their own!

Key point: an intruder egg 

must be dropped into a nest 

that already has eggs in it. 

Incubation period of intruder 

egg and host eggs is the 

same: host eggs hatch first. 

American Coots



Confirmation: Intra-species rejection of chicks

Parents imprint on first chicks 

hatched in each clutch. 

Imprinting is precise enough 

that they can reject unrelated 

chicks that hatch afterwards. 

Cross-fostering experiments 

showed that if unrelated 

chicks substituted for first 

hatched chicks, parents then 

reject their own chicks that 

hatch afterwards. 

Not cost-free: mis-imprinting 

can occur in nature. 

American Coots



Confirmation: Intra-species rejection of chicks

"... we observed rejection in action. … forms and intensities of 
parental aggression not seen in unparasitized broods, 
including actively seeking the chick from a distance to peck 
them vigorously and attempt to drown them, pecking chicks 
while brooding on the nest, and preventing chicks from access 
to the nest to be brooded

… *a+ nest in which parents killed all of their own chicks after 
apparently mis-imprinting on chicks of a neighbouring pair. 

These forms of parental aggression differed from the hostility 
that parent coots commonly use to control food allocation 
between surviving chicks."



Example 3: Megapodes 

Australian brush turkey  (+ 20 more species in Australasia)

Unique life history. 

Eggs kept warm by being buried in huge mounds of manure

Chicks hatch with full feathers, burrow out of mound, run into 
bush, never see parents or siblings. 

Fend for themselves. 

Internal yolk gives them 48 hours to learn to survive in the 
outback. 



Example 3: Megapodes 

Needs more study!

Can stand, run fast, and soon fly (within 2 days)

Cautiously peck every salient object:  

their feet, faeces, stones, seeds, anything moving 

rapidly learn what is good to eat

Discover water by pecking salient objects floating on surface, 
then drink

Avoid objects moving towards them (either crouch or flee). 



Example 3: A pure example of selection for 

innate competence 

Low survival rate

Intense selection for rapid learning and complete innate 
behaviour

No cultural transmission or imitative learning

Significance:  what are the limits of innate knowledge? 

Not clear !    Some learning (including RL?) is needed – total 
adult behaviour is not immediate, but developed over a 
period of days/weeks.



Part 3: Learning and Evolution

1. Phenotypic plasticity

- Genes cannot predict environment

2. Baldwin effects

3. Imitation, with and without culture

4. Learning as decoding of innate clues

5. Evolution is incremental optimisation



1. Why learn? Phenotypic Plasticity

Genes cannot predict the environment where animal finds itself

Different environments need different behaviour. 

So animal should learn which environment it is in, and adopt the 
appropriate behaviour. 

Continuum from moment-to-moment learning (perception) 
through to long-term skill learning. 

Ideal form of learning is Bayesian inference to optimal 
behaviour. 



2. Baldwin Effects

“Baldwin effect” is in two parts: 

1. Learning allows behavioural plasticity: animals can learn new 
behaviours in new environments (eg on a new volcanic 
island). 

2. If learned behaviours are valuable and learning is 
costly/incomplete then over evolutionary time, the learned 
behaviour may become innate.

Questions: 

Can evolutionary learning and lifetime learning substitute for 
each other?

How important is behavioural plasticity in enabling 
behavioural evolution?



3. Cultural Transmission

• Parents can demonstrate their skills to children; children 
observe and imitate their parents. 

– A non-genetic channel for information to pass from one 
generation to the next. 

• “Culture” in this sense is widespread in animals (chickens…)

• Questionable whether animal culture accumulates over many 
generations (imitation may not be accurate)

• Humans are distinct in that amount of information 
transmitted culturally seems enormously larger than for 
animals. 



4. Imitation without culture

There is more genetic information in a population than in any 
single individual. 

A naturalist observing a population might see innate adaptive 
behaviour that only some members show (eg fear of spiders).

But animals could make these observations too, and imitate 
salient behaviours that they see many other individuals doing. 

This could enable individuals to exploit population-level genetic 
information. 

No need to copy  parents - can happen within a generation.



5. Does “Innate knowledge” require 

experience for its development?

Question: in what form is “innate behaviour” 
represented? 

An animal’s whole behavioural repertoire is 
genetically specified: does process of 
cognitive development require experience?

Perhaps the most basic function of learning?  



6. Evolution is incremental optimisation

Strong constraint on animal cognition. 

Animal’s entire cognition is genetically specified. 

Question: is one function “innate knowledge” actually 
to limit the nature and scope of what an animal can 
learn? 

Animals of different sizes have brains of different sizes, 
but their behaviour may appear equally complex. (eg 
bats and cows)



Discussions: what don‟t we know?

• “Cortex algorithm”?  Does “innate knowledge” hold animals 
back? 

• Do we need other paradigms of behavioural learning besides 
RL?

• What relevance does animal learning have for robots: should 
robots have “instincts” ? 


