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Motivation – Part I

Graphical models are graphs in which:

Nodes represent random variables

Links represent statistical dependencies be-
tween variables

Graphical models provide us with a visual tool
for reasoning under uncertainty.

X1

X2

X3 X4

In machine learning and related disciplines uncertainty arises from

Limited understanding of the world

Limited amount of data



Motivation – Part II

Graphical models allow us to

Answer questions about independence of random
variables by just looking at the graph, dispensing
with complex algebraic manipulations.

Define general algorithms that perform
probabilistic inference efficiently.

X1

X2

X3 X4

As a consequence

Provided us with a common framework for representing and understanding the
properties of different probabilistic models

⇒ Enabled to relate models developed in different communities

Have accelerated progress in modeling

We will focus on Belief Networks, Markov Networks, Factor Graphs.



Bayes Rule and Independence

Bayes Rule

posterior︷ ︸︸ ︷
p(A|B) =

p(B|A)

prior︷︸︸︷
p(A)

p(B)

Example: Sally throws a die. Tom tells her
that she did not score 3. What is the proba-
bility that she scored 4?

S4 = 1: Score = 4, S3 = 0: Score 6= 3

p(S4 = 1|S3 = 0) =
p(S3 = 0|S4 = 1)p(S4 = 1)

p(S3 = 0)

=
1/6

1− 1/6
= 1/5

Marginal Independence of A and B

A ⊥⊥ B ⇐⇒ p(A|B) = p(A) or p(A,B) = p(A)p(B)

Conditional Independence of A and B given C

A ⊥⊥ B |C ⇐⇒ p(A|B,C) = p(A|C) or p(A,B|C) = p(A|C)p(B|C)



Basic Graph Definitions

Graph: A graph consists of nodes and
undirected or directed links between nodes.

Path from Xi to Xj : Sequence of connected
nodes starting at Xi and ending at Xj .

For Directed Graphs

Parents and Children: Xi is a parent of Xj if
there is a link from Xi to Xj . Xi is a child of
Xj if there is a link from Xj to Xi .

Ancestors and Descendants: The ancestors of
a node Xi are the nodes with a directed path
ending at Xi . The descendants of Xi are the
nodes with a directed path beginning at Xi .

Undirected Graph

X1 X2

X3X4

X5

Directed Graph

X1 X2 X3

X4 X5 X6

X7 X8

Directed Acyclic Graph: Graph in which by following the direction of the arrows a
node will never be visited more than once.
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node will never be visited more than once.



Belief Networks (Bayesian Networks)

A belief network is a directed acyclic graph in which
each node has associated the conditional probability of
the node given its parents.

The joint distribution is obtained by taking the product
of the conditional probabilities.

p(A,B,C ,D,E) = p(A)p(B)p(C |A,B)p(D|C)p(E |B,C)

p(E |B,C )

A B

C

D
E



Example – Part I

Sally’s burglar Alarm is sounding. Has she been Burgled, or was the alarm triggered by
an Earthquake? She turns the car Radio on for news of earthquakes.

Without loss of generality, we can write

p(A,R,E ,B) = p(A|R,E ,B)p(R,E ,B)

= p(A|R,E ,B)p(R|E ,B)p(E ,B)

= p(A|R,E ,B)p(R|E ,B)p(E |B)p(B)

However

The alarm is not directly influenced by any report on
the radio, that is p(A|R,E ,B) = p(A|E ,B)

p(R|E ,B) = p(R|E)

p(E |B) = p(E)

Therefore

p(A,R,E ,B) = p(A|E ,B)p(R|E)p(E)p(B)

B

A

E

R
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Example – Part II: Specifying the Tables

B

A

E

R

p(A|B,E)

Alarm = 1 Burglar Earthquake
0.9999 1 1

0.99 1 0
0.99 0 1

0.0001 0 0

p(R|E)

Radio = 1 Earthquake
1 1
0 0

The remaining tables are p(B = 1) = 0.01 and p(E = 1) = 0.000001. The tables and
graphical structure fully specify the distribution.



Example Part III: Inference

Initial Evidence: The alarm is sounding

p(B = 1|A = 1) =

∑
E ,R p(B = 1,E ,A = 1,R)∑
B,E ,R p(B,E ,A = 1,R)

=

∑
E ,R p(A = 1|B = 1,E)p(B = 1)p(E)p(R|E)∑

B,E ,R p(A = 1|B,E)p(B)p(E)p(R|E)
≈ 0.99

Additional Evidence: The radio broadcasts an earthquake warning:

A similar calculation gives p(B = 1|A = 1,R = 1) ≈ 0.01.

Initially, because the alarm sounds, Sally thinks that she’s been burgled. However, this
probability drops dramatically when she hears that there has been an earthquake.

The earthquake ‘explains away’ to an extent the fact that the alarm is ringing.



Independence ⊥⊥ in Belief Networks – Part I

All belief networks with three nodes and two links:

A B

C

(a)

A ⊥⊥ B |C

A B

C

(b)

A B

C

(c)

A��⊥⊥B |C

A B

C

(d)

In (a), (b) and (c), A,B are conditionally independent given C .

(a) p(A,B|C) = p(A,B,C)
p(C)

= p(A|C)p(B|C)p(C)
p(C)

= p(A|C)p(B|C)

(b) p(A,B|C) = p(A)p(C |A)p(B|C)
p(C)

= p(A,C)p(B|C)
p(C)

= p(A|C)p(B|C)

(c) p(A,B|C) = p(A|C)p(C |B)p(B)
p(C)

= p(A|C)p(B,C)
p(C)

= p(A|C)p(B|C)

In (d) the variables A,B are conditionally dependent given C .



Independence ⊥⊥ in Belief Networks – Part II

A B

C

(a)

A��⊥⊥B

A B

C

(b)

A B

C

(c)

A ⊥⊥ B

A B

C

(d)

In (a), (b) and (c), the variables A,B are marginally dependent.

In (d) the variables A,B are marginally independent.

p(A,B) =
∑

C p(A,B,C) =
∑

C p(A)p(B)p(C |A,B) = p(A)p(B)



Collider

Summary of two previous slides:

A B

C

If C has more than one incoming link, then A ⊥⊥ B
and A��⊥⊥B |C . In this case C is called collider.

A B

C

If C has at most one incoming link, then A ⊥⊥ B |C
and A��⊥⊥B. In this case C is called non-collider.



⇒

A ⊥⊥ D |B,C
A

B

C

D

B C

A

B

C

D

B C ⇒

A ⊥⊥ D |B
A ⊥⊥ D

A

B

C

D

B C

A

B

C

D

B C

non-collider in the conditioning set blocks a path collider outside the conditioning set blocks a path

⇒

A ⊥⊥ D |B,C
B ⊥⊥ C |A

A

B C

D

A

B C

D

⇒

B��⊥⊥C |A
A

B C

D

A

B C

D

all paths need to be blocked to obtain ⊥⊥



General Rule for Independence in Belief Networks

Given three sets of nodes X ,Y, C, if all paths from any element of X to any element
of Y are blocked by C, then X and Y are conditionally independent given C.

A path P is blocked by C if one of the following conditions is satisfied:

1. there is a collider in the path P such that neither the collider nor any of its
descendants is in the conditioning set C.

2. there is a non-collider in the path P that is in the conditioning set C.



Example of using the Independence Rule for Time-Series Modeling

· · · · · ·

p(ht |ht−1)

p(vt |ht , vt−1)

ht−2 ht−1 ht ht+1

vt−2 vt−1 vt vt+1

Variables v1, . . . , vT ≡ v1:T represent the observed time-series.

Discrete hidden variables h1:T generate the observations.

p(ht , v1:t) = p(vt |ht , v1:t−1)p(ht , v1:t−1)

= p(vt |ht , v1:t−1)
∑
ht−1

p(ht−1:t , v1:t−1)

= p(vt |ht , vt−1)
∑
ht−1

p(ht |ht−1, v1:t−1)p(ht−1, v1:t−1)
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Example of using the Independence Rule for Time-Series Modeling

vt ⊥⊥ v1:t−2 | {ht , vt−1}

ht−2 ht−1 ht ht+1

vt−2 vt−1 vt vt+1

ht ⊥⊥ v1:t−1 | ht−1

ht−2 ht−1 ht ht+1

vt−2 vt−1 vt vt+1
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= p(vt |ht , v1:t−1)
∑
ht−1
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= p(vt |ht , vt−1)
∑
ht−1
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Markov Network

Clique: Fully connected subset of nodes.

Maximal Clique: Clique which is not a subset of a larger clique.

A Markov Network is an undirected graph in which there
is a potential (non-negative function) ψ defined on each
maximal clique.

The joint distribution is proportional to the product of all
clique potentials.

A

B

C

D

E

p(A,B,C ,D,E) =
1

Z
ψ(A,C)ψ(C ,D)ψ(B,C ,E)

Z =
∑

A,B,C ,D,E

ψ(A,C)ψ(C ,D)ψ(B,C ,E)



Example Application of Markov Network – Part I

Problem: We want to recover a binary image from
the observation of a corrupted version of it.

X = {Xi , i = 1, . . . ,D} Xi ∈ {−1, 1}: clean pixel

Y = {Yi , i = 1, . . . ,D} Yi ∈ {−1, 1}: corrupted pixel

φ(Yi ,Xi ) = eγXiYi encourage Yi and Xi to be similar

ψ(Xi ,Xj) = eβXiXj encourage the image to be smooth

p(X ,Y ) ∝

[
D∏
i=1

φ(Yi ,Xi )

][∏
i∼j

ψ(Xi ,Xj)

]

Finding the most likely X given Y is not easy (since the graph is not singly-connected),
but approximate algorithms often work well.



Example Application of Markov Network – Part II

5 10 15 20 25
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left Original clean image

middle Observed (corrupted) image

right Most likely clean image argmaxX p(X |Y )



Independence ⊥⊥ in Markov Networks

A

B C

D

B ⊥⊥ C |A,D?

p(B|A,D,C) = p(B|A,D)?

p(B|A,D,C) =
p(A,B,C ,D)

p(A,C ,D)

=
p(A,B,C ,D)∑
B p(A,B,C ,D)

=
ψ(A,B)����ψ(A,C)ψ(B,D)����ψ(C ,D)∑
B ψ(A,B)����ψ(A,C)ψ(B,D)����ψ(C ,D)

=
p(A,B,D)

p(A,D)

= p(B|A,D)



General Rule for Independence in Markov Networks

⇒

A

B C

D

A

B C

D

⇒

A

B C

D

A

B C

D

If every path from any member of X to any member of Y passes through any
member of C then X and Y are conditionally independent given C.



Alternative Rule for Independence in Belief Networks

Ancestral Graph: Remove any node which is
neither in X ∪ Y ∪ C nor an ancestor of a
node in this set, together with any edges in or
out of such nodes.

Moralisation: Add a line between any two
nodes which have a common child. Remove
arrowheads.

Independence: If all paths which join a node
in X to one in Y pass through any member of
C then X ⊥⊥ Y | C.

A B

C D

E F

G H I

L M

A ⊥⊥ I |F ,M
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Expressiveness of Belief and Markov Networks

⇒

A B

C

A ⊥⊥ B, A��⊥⊥B |C
p(A,B,C) = p(C |A,B)︸ ︷︷ ︸

ψ(A,B,C)

p(B)︸ ︷︷ ︸
1

p(C)︸ ︷︷ ︸
1

⇒

A B

C

A��⊥⊥B

A��⊥⊥B |C

⇒

A

B C

D

B��⊥⊥C

B��⊥⊥C |A
B��⊥⊥C |D
B ⊥⊥ C |A,D

A

B C

D

B��⊥⊥C : the path B,A,C is not blocked

B ⊥⊥ C |A
B��⊥⊥C |D: the path B,A,C is not blocked

B��⊥⊥C |A,D: the path B,D,C is not blocked



Factor Graphs

A square node represents a factor (non negative function) of its neighbouring variables.

A

B

C D

E

f1

f2

f3 f4

The joint function is the product of all factors:

f (A,B,C ,D,E) = f1(A,B)f2(B,C ,D)f3(C ,E)f4(D,E)

Factor graphs are useful for performing efficient computations (not just for probability).



Inference

Inference corresponds to operations such as computing marginal or conditional
distributions from the joint distribution.

In general inference is computationally very expensive. For singly-connected graphical
models, there exist efficient algorithms based on the concept of message passing.

Singly-Connected Graph:

Graph in which there is only one path from a node
to another node.

Singly-Connected Graph

A B C

D E F

G H



Inference

Inference corresponds to operations such as computing marginal or conditional
distributions from the joint distribution.

In general inference is computationally very expensive. For singly-connected graphical
models, there exist efficient algorithms based on the concept of message passing.

Singly-Connected Graph:

Graph in which there is only one path from a node
to another node.

Multiply-Connected Graph

A B C

D E F

G H



Sum-Product Algorithm for Factor Graphs - Non Branching Tree

p(a, b, c, d) ∝ f1 (a, b) f2 (b, c) f3 (c, d) f4 (d) a, b, c, d binary variables

Passing variable-to-variable messages from d up to a

µd→c (c)µc→b (b)µb→a (a)

←←←
a b c d

f1 f2 f3 f4

p(a) =
∑
b,c,d

p(a, b, c, d)

∝
∑
b,c,d

f1 (a, b) f2 (b, c) f3 (c, d) f4 (d)⇒ 23 sums

=
∑
b

f1 (a, b)
∑
c

f2 (b, c)
∑
d

f3 (c, d) f4 (d)⇒ 2× 3 sums︸ ︷︷ ︸
µd→c (c)︸ ︷︷ ︸

µc→b(b)︸ ︷︷ ︸
µb→a(a)

⇒ Passing variable-to-variable messages from d up to a.
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Sum-Product Algorithm for Factor Graphs - Non Branching Tree

For p(c) need to send messages in both directions

µd→c (c)µb→c (c)µa→b (b)

←→→
a b c d

f1 f2 f3 f4

p(c) ∝
∑
a,b,d

f1 (a, b) f2 (b, c) f3 (c, d) f4 (d)

=
∑
b

∑
a

f1 (a, b)︸ ︷︷ ︸
µa→b(b)

f2 (b, c)

︸ ︷︷ ︸
µb→c (c)

∑
d

f3 (c, d) f4 (d)︸ ︷︷ ︸
µd→c (c)



Sum-Product Algorithm for Factor Graphs - Branching Tree

p(a, b, c, d , e) ∝ f1 (a, b) f2 (b, c, d) f3 (c) f4 (d , e) f5 (d)

a b

c

d e

f1 f2

f3

f4

f5

Need to define factor-to-variable messages and variable-to-factor messages

p(a) ∝ f1 (a, b)
∑
c,d

f2 (b, c, d) f3 (c)︸ ︷︷ ︸
µc→f2

(c)=µf3→c (c)

f5 (d)︸ ︷︷ ︸
µf5→d (d)

∑
e

f4 (d , e)︸ ︷︷ ︸
µf4→d (d)︸ ︷︷ ︸

µd→f2
(d)︸ ︷︷ ︸

µb→f1
(b)=µf2→b(b)︸ ︷︷ ︸

µf1→a(a)

⇒ Marginal inference for a singly-connected structure is easy.



Sum-Product Algorithm for Factor Graphs

Variable to factor message

µv→f (v) =
∏

fi∼v\f µfi→v (v)

Messages from extremal variables are set to unity

f

f1

f2

v

µf1→
v

(v)

µ
f2→v (v)

µv→f (v)

Factor to variable message

µf→v (v) =
∑

vi
f (v , {vi})

∏
vi∼f \v µvi→f (vi )

Messages from extremal factors are set to the factor

v

v1

v2

f
µv1→

f
(v1

)

µ
v2→f (v2)

µf→v (v)

Marginal

p(v) ∝
∏

fi∼v µfi→v (v)



Inference in Hidden Markov Models (HMM) – Part I

HMM: probabilistic time-series model which contains

A set of discrete or continuous variables
v1, . . . , vT ≡ v1:T which represent the
observed time-series.

A set of discrete hidden variables h1:T that
generate the observations.

· · · ht−1 ht ht+1 · · ·

vt−1 vt vt+1

p(v1:T , h1:T ) = p(v1|h1)p(h1)
∏T

t=2 p(vt |ht)p(ht |ht−1)

p(ht = j |ht−1 = i) = πji , π: transition matrix

p(vt = j |ht = i) = ρji , ρ: emission matrix

Common inference problems:

Infer ht from p(ht |v1:t) which uses the observations up to time t (filtering).

Infer ht from p(ht |v1:T ) which also uses future observations (smoothing).

Infer the most likely hidden sequence h1:T from argmaxh1:T
p(h1:T |v1:T ) (Viterbi).



Inference in Hidden Markov Models – Part II

Belief network representation of a HMM:

h1 h2 h3 h4

v1 v2 v3 v4

As a factor graph:

f11 = p(v1|h1)

f12 = p(h2|h1)
f11

f12
h1 h2 h3 h4

v1 v2 v3 v4

Filtering: carried our by passing messages up and to the right.

Smoothing: combine filtering messages with messages up and to the left. Viterbi
computed similarly.



Localisation example – Part I

Problem: You’re asleep upstairs in your house and awoken by a burglar on the ground
floor. You want to figure out where the burglar might be based on a sequence of noise
information.

You mentally partition the ground floor into a 5× 5 grid. For each grid position

you know the probability that
if someone is in that position
the floorboard will creak

you know the probability that
if someone is in that position
he will bump into something in
the dark

you assume that the burglar
can move only into a neighbor
grid square with uniform
probability

Prob. of creak Prob. of bump



Localisation example – Part II

We can represent the scenario using a HMM where

· · · ht−1 ht ht+1 · · ·

vt−1 vt vt+1

The hidden variable ht represents the position of the burglar in the grid
at time t

ht ∈ {1, . . . , 25}

The visible variable vt represents occurrence of creak/bump at time t

v=0: no creak, no bump

v=1: creak, no bump

v=2: no creak, bump

v=3: creak, bump



Localisation example – Part III

(a) Observed creaks and bumps for 10 time-steps
(b) Filtering p(ht |v1:t)
(c) Smoothing p(ht |v1:10)
(d) Most likely sequence argmaxh1:T

p(h1:T |v1:T )
(e) True Burglar position

(a)

(b)

(c)

(d)

(e)



Natural Language Model Example – Part I

Problem: A ‘stubby finger’ typist has the tendency to hit either the correct key or a
neighbouring key. Given a typed sequence you want to infer what is the most likely word
that this corresponds to.

The hidden variable ht represents the intended letter at time t

The visible variable vt represents the letter that was actually typed at time t

We assume that there are 27 keys: lower case a to lower case z and the space bar.
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Transition p(ht = j |ht−1 = i) Emission p(vt = j |ht = i)



Natural Language Model Example – Part II

Given the typed sequence kezrninh what is the most likely word that this corresponds to?

Listing the 200 most likely hidden sequences (using a form of Viterbi)

Discard those that are not in a standard English dictionary

Take the most likely proper English word as the intended typed word

. . . and the answer is . . .



Learning

Have a model p(X |θ) and dataset D =
{
X 1, . . . ,XN

}
. What does the data say about θ?

p(D|θ) =
N∏
i=1

p(X i |θ) identically independently distributed

p(θ) prior preference on parameters

p(θ|D)︸ ︷︷ ︸
posterior

=

p(D|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

p(D)︸ ︷︷ ︸
marginal likelihood

⇒

Plate Notation

θ

X 1 X 2 X 3 · · · XN

θ

X 1 X 2 X i

i = 1 : N



Summarising the Parameter Posterior

Maximum a Posteriori (MAP) Estimate

Mode of the posterior

θMAP = argmax
θ

p(D|θ)p(θ)

Maximum Likelihood (ML)

Mode of the posterior when the prior is omitted (or equivalently a‘flat prior’
p(θ) = const is defined)

θML = argmax
θ

p(D|θ)



Naive Bayes Classifier

Popular model, e.g. for spam filtering

C is the class label C ∈ {0, 1}
E.g. spam/ham

Xi are attributes Xi ∈ {0, 1}
E.g. presence/absence of keyword cash

p(X1, . . . ,XD ,C) = p(C)
D∏
i=1

p(Xi |C)

C

X1 X2 X3 · · · XD

p(C |X1, . . . ,XD) ∝ p(X1, . . . ,XD |C)p(C) = p(C)
∏
i

p(Xi |C)

Fast, simple classifier: strong independence assumption makes learning easy.

How to learn the table entries?



Naive Bayes: Learning

We are interested in learning the table entries from N observa-
tions D = {(C 1,X 1

1 , . . . ,X
1
D), . . . , (CN ,XN

1 , . . . ,X
N
D )}.

θi = p(Xi |C , θi ), i = 1 . . . ,N

θC = p(C |θC )

Bayes: p(θ|D)

MAP/ML: θ = argmaxθ p(θ|D)

We assumed parameter prior independence.

C j

X j
1 X j

2 X j
3

· · · X j
D

θC

θ1 θ2 θ3

· · ·
θD

j = 1 : N



Naive Bayes: Maximum Likelihood

The log-likelihood is given by

log p(D|θ) = log
N∏
j=1

p(X j
1, . . . ,X

j
D ,C

j |θ) = log
N∏
j=1

p(C j |θC )
D∏
i=1

p(X j
i |C

j , θi )

We want to set θi,0 = p(Xi = 0|C = 0, θi ). The dependence of the log-likelihood on θi,0 is

log θn0i,0(1− θi,0)n1 , n0/1 is the number of times (C = 0,Xi = 0/1) occurs in D

By differentiating:

∂ log p(D|θ)

∂θi,0
=

n0
θi,0
− n1

1− θi,0

and equating to zero we obtain the optimal value

θi,0 =
n0

(n0 + n1)
which corresponds to calculating frequencies.

Problem if there are zero data counts. Bayesian approach avoids this problem.



Naive Bayes: Bayesian Approach

Assume D = 1. Since p(θ) = p(θC )p(θ1)

p(θC , θ1|D) ∝ p(θC , θ1,D)

= p(θC )p(θ1)
N∏
j=1

p(C j |θC )p(X j
1|θ1)

=
{
p(θC )

N∏
j=1

p(C j |θC )
}{

p(θ1)
N∏
j=1

p(X j
1|θ1)

}
∝ p(θC |D)p(θ1|D)

If we further assume that the prior for the table factorises p(θ1) = p(θ1,0)p(θ1,1)
(θ1,0 = p(X1 = 0|C = 0, θ1), θ1,1 = p(X1 = 0|C = 1, θ1)) and each term is beta
distributed, that is

p(θ1,0) = B(α, β) ∝ θα−1
1,0 (1− θ1,0)β−1

then

p(θ1,0|D) ∝ θn01,0(1− θ1,0)n1θα−1
1,0 (1− θ1,0)β−1 = B(α + n0, β + n1)



Learning in Markov Networks: Maximum Likelihood

Consider a Markov network distribution p(X ) defined
on cliques Xj ⊆ X

p(X|θ) =
1

Z(θ)

C∏
j=1

ψ(Xj |θj)

X1

X2

X3

X4 X5

We want to learn the parameters θ = {θ1, . . . , θC} from a set of observations
D = {X i , i = 1, . . . ,N}.

The log-likelihood

log p(D|θ) = log
N∏
i=1

p(X i |θ)

= log
N∏
i=1

1

Z(θ)

C∏
j=1

ψ(X i
j |θj)

=
N∑
i=1

C∑
j=1

logψ(X i
j |θj)− N logZ(θ)︸ ︷︷ ︸

problematic

does not split into a set of isolated parameter terms ⇒ need to use numerical methods.



Learning Parameters with Hidden Variables

H V

θH θV

H is a hidden variable

V is an observed or visible variable

We want to learn θ = {θH , θV } from a set of observa-
tions {V i , i = 1, . . . ,N}

Maximum Likelihood: the likelihood is no longer a product of a factor in θH and another
factor in θV

p(D|θ) =
N∏
i=1

p(V i |θ) =
N∏
i=1

∑
Hi

p(V i |H i , θV )p(H i |θH)

⇒ need numerical methods (gradient approaches, expectation maximization)

Bayesian case: the posterior of the parameter will not in general factorise

p(θ|D) 6= p(θV |D)p(θH |D)

⇒ need approximate Bayesian methods.



Expectation Maximisation Algorithm for Maximum Likelihood

Replace the log-likelihood with a lower bound that has a decoupled form.

Introduce distribution q and take the Kullback-Leibler divergence

KL(q(H|V )||p(H|V , θ)) =

〈
log q(H|V )− log

p(H,V |θ)

p(V |θ)

〉
q(H|V )

≥ 0

which gives

log p(V |θ) ≥ −〈log q(H|V )〉q(H|V )︸ ︷︷ ︸
Entropy

+ 〈log p(H,V |θ)〉q(H|V )

For q(H|V , θ) = p(H|V , θold), the entropy term does not depend on θ and we obtain a
bound that decouples the parameters:

log p(V |θ) ≥ Entropy + 〈log p(V |H, θV )〉p(H|V ,θold ) + 〈log p(H|θH)〉p(H|V ,θold )

Iterative algorithm:

E-step: Compute p(H|V , θold) using an inference approach

M-step: Update θnew = argmaxθ 〈log p(H,V |θ)〉p(H|V ,θold )



Reading

1. Bayesian Reasoning and Machine Learning. D. Barber, 2010 (examples and demos in
this talk).

Can be downloaded from www.cs.ucl.ac.uk/staff/D.Barber/brml

2. Pattern Recognition and Machine Learning. C. M. Bishop, 2009.

3. Probabilistic Networks and Expert Systems. R. G. Cowell and A. P. Dawid, S. L.
Lauritzen, D. Spiegelhalter, 2000.

4. Probabilistic graphical Models: Principles and Techniques. D. Koller and N.
Friedman, 2009.

5. Bayesian Networks and Decision Graphs. F. V. Jensen, 2001.

6. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. J.
Pearl, 1988.

7. Graphical Models. S. Lauritzen, 1996.



Appendix: Independence in Belief Networks

Yellow indicates conditioning, grey non-conditioned nodes.

Represent the structure of the graph on the reduced set of variables after
conditioning/marginalisation.
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