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Error Functions to Probabilities

I Last time we introduced different learning scenarios using
error functions.

I In this lecture we will reinterpret those error functions through
probability.

I The error function can be seen as a logarithm of a probability
density function.

I Before we take that perspective we will first review probability.
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Probability Review I

I We are interested in trials which result in two random
variables, X and Y , each of which has an ‘outcome’ denoted
by x or y .

I We summarise the notation and terminology for these
distributions in the following table.

Terminology Notation Description

Joint P (X = x ,Y = y) ‘The probability that

Probability X = x and Y = y ’

Marginal P (X = x) ‘The probability that

Probability X = x regardless of Y ’

Conditional P (X = x |Y = y) ‘The probability that

Probability X = x given that Y = y ’

Table: The different basic probability distributions.



A Pictorial Definition of Probability
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Figure: Representation of joint and conditional probabilities.



Different Distributions

Terminology Definition
Joint limS→∞

sX=3,Y =4

S
Probability = P (X = 3,Y = 4)
Marginal limS→∞

sX=5
S

Probability = P (X = 5)
Conditional limS→∞

sX=3,Y =4

sY =4

Probability = P (X = 3|Y = 4)

Table: Definition of probability distributions from Table 1 in terms of the
system depicted in Figure 1.



Notational Details

I Typically we should write out P (X = x ,Y = y).

I In practice, we often use P (x , y).

I This looks very much like we might write a multivariate
function, e.g. f (x , y) = x

y .

I For a multivariate function though, f (x , y) 6= f (y , x).
I However P (x , y) = P (y , x) because

P (X = x ,Y = y) = P (Y = y ,X = x).

I We now quickly review the ‘rules of probability’.



Normalization

All distributions are normalized. This is clear from the fact that∑
x sx = S , which gives

∑
x

P (x) =

∑
x sx
S

=
S

S
= 1.

A similar result can be derived for the marginal and conditional
distributions.



The Sum Rule

I The marginal probability P (y) is
sy
S (ignoring the limit).

I The joint distribution P (x , y) is
sx,y

S .

I sy =
∑

x sx ,y so
sy
S

=
∑
x

sx ,y

S
,

in other words
P (y) =

∑
x

P (x , y) .

This is known as the sum rule of probability.



The Product Rule

I P (x |y) is
sx ,y

sy
.

I P (x , y) is
sx ,y

S
=

sx ,y

sy

sy
S

or in other words

P (x , y) = P (x |y) P (y) .

This is known as the product rule of probability.



Bayes’ Rule

I From the product rule,

P (x , y) = P (y , x) = P (y |x) P (x) ,

so
P (x |y) P (y) = P (y |x) P (x)

which leads to Bayes’ rule,

P (x |y) =
P (y |x) P (x)

P (y)
.



Expectations

I We use a probabilistic model to summarizes our beliefs about
states.

I We compute expected values by evaluating function under the
distribution.

〈f (x)〉P(x) =
∑
x

P (x) f (x) .

You will also see expectations written in the form E {f (x)}.
I The mean is 〈x〉P(x), the variance is

〈
x2
〉
− 〈x〉2.



Distribution Representation

I We can represent probabilities as tables

x 0 1 2

P (x) 0.2 0.5 0.3

I But sometimes we prefer to represent them as functions.



Binomial Distribution

I Jakob Bernoulli: black and red balls in
an urn. Proportion of red is π.

I Sample with replacement. Binomial
gives the distribution of number of
reds, y , from S extractions

p(y |π,S) =
S!

y !(S − y)!
πy (1− π)(S−y)

I Mean is given by Sπ and variance
Sπ(1− π).
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Figure: The binomial distribution for π = 0.4 and S = 20.



Continuous Variables

I So far discrete values of x or y .

I For continuous models we use the probability density function
(PDF).

I Discrete case: defined probability distributions over a discrete
number of states.

I How do we represent continuous as probability?

I Student heights:

I Develop a representation which could answer any question we
chose to ask about a student’s height.

I PDF is a positive function, integral over the region of interest
is one1.

1In what follows we shall use the word distribution to refer to both discrete
probabilities and continuous probability density functions.



Manipulating PDFs

I Same rules for PDFs as distributions e.g.

p (y |x) =
p (x |y) p (y)

p (x)

where p (x , y) = p (x |y) p (y) and for continuous variables
p (x) =

∫
p (x , y) dy .

I Expectations under a PDF

〈f (x)〉p(x) =

∫
f (x) p (x) dx

where the integral is over the region for which our PDF for x
is defined.



The Gaussian Density

I Perhaps the most common probability density.

p(y |µ, σ2) =
1√

2πσ2
exp

(
−(y − µ)2

2σ2

)
= N

(
y |µ, σ2

)
I Also available in multivariate form.

I First proposed maybe by de Moivre but also used by Laplace.



The Gaussian Density

I Perhaps the most common probability density.

p(y|µ,C) =
1

(2π)
p
2 |C|

1
2

exp

(
−(y − µ)>C−1(y − µ)

2

)
= N (y|µ,C)

I Also available in multivariate form.

I First proposed maybe by de Moivre but also used by Laplace.



Gaussian PDF I
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Figure: The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225. It
might represent the heights of a population of students.
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Sample Based Approximations I

I Sample based approximation

〈f (y)〉P(y) ≈
1

S

S∑
i=1

f (yi ) .

I Special cases of this include the sample mean, often denoted
by ȳ , and computed as

ȳ =
1

S

S∑
i=1

yi ,



Sample Mean vs True Mean

I This is an approximation to the true distribution mean

〈y〉 ≈ ȳ .

I The same approximations can used for continuous PDFs, so
we have

〈f (x)〉p(x) =

∫
f (x) p (x) dx

≈ 1

S

S∑
i=1

f (xi ) ,

where xi are independently obtained samples from the
distribution p (x).

I Approximation gets better for increasing S and worse if the
samples from P (y) are not independent.
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Regression Revisited

I We introduced an error function of the form

E (w) =
n∑

i=1

(
w>φi − yi

)2

I Quadratic error functions can be seen as Gaussian noise
models.

I Imagine we are seeing data given by,

y(xi ) = w>φi + ε

where ε is Gaussian noise with standard deviation σ,

ε ∼ N
(
0, σ2

)
.



Noise Corrupted Mapping

I This implies that

yi ∼ N
(
w>φi , σ

2
)

I Which we also write

p(yi |w, σ) = N
(
yi |w>φi , σ

2
)



Gaussian Likelihood

I If the noise is sampled independently for each data point from
the same density we have

p(y|w, σ2) =
n∏

i=1

N
(
yi |w>φi , σ

2
)

I This is an i.i.d. assumption about the noise.

I Writing the functional form we have

p(y|w, σ) =
n∏

i=1

1√
2πσ2

exp

(
−(yi −w>φi )

2

2σ2

)
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Gaussian Likelihood

I If the noise is sampled independently for each data point from
the same density we have

p(y|w, σ2) =
n∏

i=1

N
(
yi |w>φi , σ

2
)

I This is an i.i.d. assumption about the noise.

I Writing the functional form we have

p(y|w, σ) ∝ exp

(
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n∑
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2

2σ2
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Gaussian Log Likelihood

I If the noise is sampled independently for each data point from
the same density we have

p(y|w, σ2) =
n∏

i=1

N
(
yi |w>φi , σ

2
)

I This is an i.i.d. assumption about the noise.

I Writing the functional form we have

logp(y|w, σ) = − 1

2σ2

n∑
i=1

(yi −w>φi )
2 + const



Gaussian Log Likelihood

I If the noise is sampled independently for each data point from
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p(y|w, σ2) =
n∏

i=1

N
(
yi |w>φi , σ

2
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I This is an i.i.d. assumption about the noise.

I Writing the functional form we have
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Gaussian Log Likelihood

I If the noise is sampled independently for each data point from
the same density we have

p(y|w, σ2) =
n∏

i=1

N
(
yi |w>φi , σ

2
)

I This is an i.i.d. assumption about the noise.

I Writing the functional form we have

− logp(y|w, σ) =
1

2σ2
E (w) + const



Probabilistic Interpretation of the Error Function

I Probabilistic Interpretation for Error Function is Negative Log
Likelihood.

I Minimizing error function is equivalent to maximizing log
likelihood.

I Maximizing log likelihood is equivalent to maximizing the
likelihood because log is monotonic.

I Probabilistic interpretation: Minimizing error function is
equivalent to maximum likelihood with respect to parameters.



Consistency of Maximum Likelihood

I If data was really generated according to probability we
specified.

I Correct parameters will be recovered in limit as n→∞.

I This can be proven through sample based approximations (law
of large numbers) of “KL divergences”.

I Mainstay of classical statistics.
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Bayesian Approach

I Likelihood for the regression example has the form

p(y|w, σ2) =
n∏

i=1

N
(
yi |w>φi , σ

2
)
.

I Suggestion was to maximize this likelihood with respect to w.

I This can be done with gradient based optimization of the log
likelihood.

I Alternative approach: integration across w.

I Consider expected value of likelihood under a range of
potential ws.

I This is known as the Bayesian approach.



Note on the Term Bayesian

I We will use Bayes’ rule to invert probabilities in the Bayesian
approach.

I Bayesian is not named after Bayes’ rule (v. common
confusion).

I The term Bayesian refers to the treatment of the parameters
as stochastic variables.

I For early statisticians this was very controversial (Fisher et al).



Binomial Distribution Revisited

I Binomial for one triala (yi is now
either 0 or 1) given by

p(yi |π) = πyi (1− π)(1−yi )

I Thomas Bayes considered a ball
landing uniformly across a table.

I And another ball landing on the left or
right (Bayes, 1763, page 385).

I This treatment of a parameter, π, as a
random variable that was/is
considered controversial.

aKnown as a Bernoulli distribution.
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Simple Bayesian Inference

posterior =
likelihood× prior

marginal likelihood

I Four components:

1. Prior distribution: represents belief about parameter values
before seeing data.

2. Likelihood: gives relation between parameters and data.
3. Posterior distribution: represents updated belief about

parameters after data is observed.
4. Marginal likelihood: represents assessment of the quality of the

model. Can be compared with other models (likelihood/prior
combinations). cf Josh’s talk. Ratios of marginal likelihoods
are known as Bayes factors.



Example System: Robot Location

I Represent state (location) of the robot as x.

I The robot makes readings using its sensors. These are stored
in y.

I Our initial belief about robot position is given by p(x) this is
the prior.

I Our expectation of sensor readings given robot location is the
likelihood p(y|x).

I We combine initial picture of location, with sensor readings to
get updated picture of location this is the posterior: p(x|y).



Gaussian Noise
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Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.
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Gaussian Noise
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Expectation Propagation

I Gaussian prior combines with Gaussian likelihood for Gaussian
posterior.

I This Gaussian prior combines with Gaussian likelihood for
Gaussian posterior.

I If likelihood is non-Gaussian one approach is to approximate
the posterior distribution with a Gaussian.



Probit Likelihood
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Figure: The probit likelihood. The plot shows p (y |x) for different values
of y . For y = 1 we have p (y |x) = φ (x) =

∫ x

−∞N (z |0, 1) dz .



Classification
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Ordinal Noise Model

Ordered Categories

0

0.5

1

-4 -2 0 2 4

p
(y
|x

)

x

y = −1 y = 1y = 0

Figure: The ordered categorical noise model (ordinal regression). The
plot shows p (y |x) for different values of y . Here we have assumed three
categories.



Ordinal Regression
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Figure: Bayesian inference with an ordinal categorical likelihood.
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Ordinal Regression

0

1

2

3

4

-3 -2 -1 0 1 2 3

p (x)

p (y |x)

p (x |y)

Figure: Bayesian inference with an ordinal categorical likelihood.



Ordinal Regression
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Bayesian Linear Regression

I Combine our regression likelihood

yi ∼ N
(
w>φi , σ

2
)

I With a prior density over the parameters.

w ∼ N (0, αI)

I Marginal likelihood given by

y ∼ N (0,K)

where elements of K are given by

ki ,j = αφ>i φj + δi ,jσ
2



Marginal Likelihood

I First part of Gaussian marginal likelihood dependent on inner
products

ki ,j = αφ>i φj

I Mercer’s theorem allows us to replace this with a covariance
function/kernel

ki ,j = k(xi ,:, xj ,:)

I This allows us to make nonparametric models: models with
infinite basis functions.

k(xi ,:, xj ,:) =
∞∑

k=1

φk(xi )φk(xj)



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k
(
x, x′

)
= α exp

(
−||x− x′||2

2`2

)

I Covariance matrix is built
using the inputs to the
function t.

I For the example above it
was based on Euclidean
distance.

I The covariance function is
also know as a kernel.
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Covariance Samples
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Figure: Exponentiated quadratic kernel with ` = 10−
1
2 , α = 1
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Covariance Samples
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Figure: Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function ` = 1, α = 4



Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Kernel Parameters
Can we determine length scales and noise levels from the data?
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Mixture of Gaussians I

I Probabilistic clustering methods.

I Bayesian equivalent of K -means.

I Mixture of Gaussians.

I Assume data is sampled from a Gaussian density:

p(yi |si ) =
K∏

k=1

N (yi |µk ,Ck)si,k

I Where si is a binary vector encoding component with 1-of-n
encoding.

I Multinomial prior over si

p(si ) =
K∏

k=1

π
si,k
k



EM Algorithm

I Marginal likelihood

log p(yi ) = log
∑
si

p(yi , si )

I Jensen’s inequality gives a bound.

I Bound becomes equality if q(si ) = p(si |yi )

p(yi ) =
p(yi , si )

p(si |yi )
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EM Algorithm

I Iterate between

1. E Step Set q(si ) = p(si |yi )
2. M Step Maximize

∑
si

q(si ) log p(yi , si ) with respect to
parameters.



EM for Mixtures of Gaussians

I Iterate between

1. E Step Set q(si ) =
∏K

k=1 r
si,k

i,k where

ri,k =
πkN (yi |µk ,Ck)∑
k πkN (yi |µk ,Ck)

2. M Step Maximize 〈log p(yi , si )〉q(si )
by setting

πk =
1

n

n∑
i=1

ri,k , µk =
1

n̄k

n∑
i=1

ri,kyi

Ck =
1

n̄k

n∑
i=1

ri,k(yi − µk)(yi − µk)>

n̄k =
n∑

i=1

ri,k



Netlab Demo

demgmm1.m



Variational Inference

I EM algorithm relies on computation of setting q(si ) to
p(si |yi ).

I In variational inference we use approximate posteriors for the
q(·) distributions.

I This makes the algorithms tractable but non exact.
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Latent Variable Models

Quoting from Hotelling, 1933, page 417:

Consider p variables attaching to each individual of a population.
These statistical variables y1, y2, ... , yp might for example be
scores made by school children in tests of speed and skill in solving
arithmetical problems or in reading; or they might be various
physical properties of telephone poles, or the rates of exchange
among various currencies. The y’s will ordinarily be correlated. It is
natural to ask whether some more fundamental set of independent
variables exists, perhaps fewer in number than the y’s, which
determine the values the y’s will take. If x1, x2, ... are such
variables, we shall then have a set of relations of the form

yi = f (x1, x2, ...) (i = 1, 2, ..., p) (1)

Quantities such as the x’s have been called mental factors in recent
psychological literature. However in view of the prospect of
application of these ideas outside of psychology, and the conflicting
usage attaching to the word “factor” in mathematics, it will be
better simply to call the x’s components of the complex depicted by
the tests.



Latent Variable Model

Relationship between the latent space and the data space

yi ,: = Wxi ,: + µ + εi ,:

where W ∈ <p,q is a mapping matrix and

εi ,: ∼ N
(
0, σ2I

)
.



Linear Dimensionality Reduction

yi ,j = fj(xi ,:)

X Y

Figure: Mapping a two dimensional plane to a higher dimensional space
in a linear way. Data are generated by corrupting points on the plane
with noise.



Latent Variable Model

I Same likelihood as for linear regression (but multiple output
now)

yi ,j ∼ N
(
w>j ,:xi ,: + µj , σ

2
)
.

I With independence assumptions that gives

p (Y|X,W) =
n∏

i=1

N
(
yi ,:|Wxi ,: + µ, σ2I

)
.



Prior in Latent Space

I The latent components (or factors are unknown).

I Use a prior distribution over them and marginalize them out.

xi ,j ∼ N (0, 1) .

So the joint density for the components can be written

p(X) =
n∏

i=1

N (xi ,:|0, I) .



Marginalization of Latent Variables

I Marginal likelihood is given by

p(Y|W,µ, σ2) =

∫
p(Y|W,µ, σ2)p(X)dX.

performing this integration leads to

yi ,: ∼ N
(
µ,WW> + σ2I

)
.

define C = WW> + σ2I.



Maximum Likelihood

I Log likelihood is given by

log p(Y|W,µ, σ2) =− np

2
log 2π − n

2
log |C|

− 1

2

n∑
i=1

(yi ,: − µ)>C−1(yi ,: − µ).

I Error function is therefore

E (W,µ, σ2) =
n

2
log |C|+ 1

2

n∑
i=1

(yi ,: − µ)>C−1(yi ,: − µ).

I Minimize this error function.



Optimum for Mean I

I Error as function of µ

E (µ) = −1

2

n∑
i=1

(yi ,: − µ)>C−1(yi ,: − µ)

I Compute the gradient

dE (µ)

dµ
= C−1

(
n∑

i=1

yi ,: − nµ

)
.

I Find a minimum by looking for where gradients are zero,

0 = C−1

(
n∑

i=1

yi ,: − nµ

)



Optimum for Mean II

I Implying

C−1µ = C−1 1

n

n∑
i=1

yi ,:

µ =
1

n

n∑
i=1

yi ,:.



Optimizing Parameters I

I This solution allows us to set Ŷ = Y − 1µ>.

I Substitute to give us a new“likelihood”over the centered data,

p
(
Ŷ|W

)
=

p∏
j=1

N (ŷi ,:|0,C) ,

where C = WW> + σ2I.

I Tipping and Bishop (1999) showed that the global maximum
likelihood for W and σ2 can be found by an eigenvalue
problem.

I Gradient of error function is

dE (W, σ2)

dC
=

n

2
C−1 − 1

2
C−1Ŷ>ŶC−1. (1)



Optimizing Parameters II

I Solution is given by

Uq︸︷︷︸
first q eigenvectors

Λ =
1

n
Ŷ>Ŷ︸ ︷︷ ︸

sample covariance matrix

Uq,



Oil Data

Homogeneous

Stratified

Annular

oil

water

gas

oil

water

gas

Figure: The “oil data”. The data set is artificially generated by modeling
the manner in which a gamma ray’s intensity falls when it passes through
a different density materials.



Probabilistic Models Allow for Missing Data
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Figure: Projection of the oil data set on to q = 2 latent dimensions using
the probabilistic PCA model. Different plots show various proportions of
missing values. All values are missing at random from the design matrix
Y. Right: 10% missing.
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Figure: Projection of the oil data set on to q = 2 latent dimensions using
the probabilistic PCA model. Different plots show various proportions of
missing values. All values are missing at random from the design matrix
Y. Right: 20% missing.



Probabilistic Models Allow for Missing Data
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Figure: Projection of the oil data set on to q = 2 latent dimensions using
the probabilistic PCA model. Different plots show various proportions of
missing values. All values are missing at random from the design matrix
Y. Right: 30% missing.



Probabilistic Models Allow for Missing Data
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Figure: Projection of the oil data set on to q = 2 latent dimensions using
the probabilistic PCA model. Different plots show various proportions of
missing values. All values are missing at random from the design matrix
Y. Right: 50% missing.



Factor Analysis

I Factor Analysis is a very similar model.

I In factor analysis the likelihood allows for different variances
at each output

p(yi ,j |wj ,:, xi ,:, σ
2
j ) = N

(
yi ,j |w>j ,:xi ,:, σ

2
j

)
I This leads to a marginal covariance matrix of the form

C = WW> + D

where diagonal elements of D are given by σ2
j .

I Cannot now be solved through an eigenvalue problem.



Conclusions

I Probabilistic interpretation of learning has error functions as
negative log likelihood.

I Bayesian approach treats parameters as random variables.

I Learning proceeds through combination of prior and likelihood.

I Latent variable models and mixture of Gaussians are not
Bayesian but use Bayes’ rule.

I All these models sit in the wider family of probabilistic models.
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