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Three fields

Fields
Linguistics
Cognitive Science
Machine learning

Linguistics and cognitive science
Computational Linguistics and Machine Learning

All three
Computationally explicit and cognitively plausible models of
language acquisition.
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Cognitive science and linguistics

Jerry Fodor:

The Argument from the Poverty of the Stimulus is
the existence proof for the possibility of cognitive
science.

Chomsky’s innovations
Inadequacy of simple behaviorist models (c.f. Skinner)
Need to hypothesize a very rich internal structure to
account for the complexities of language
Computationally (formally) explicit models of natural
language – the Chomsky hierarchy.
View of linguistics as a branch of psychology
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Unsupervised Learning
Fundamental problem of linguistics

Chomsky’s questions (1986)
1 What constitutes knowledge of a language?
2 How is this knowledge acquired by its speakers?

Jackendoff (2008)
1 Descriptive constraint: the class of languages must be

sufficiently rich to represent natural languages
2 Learnability constraint: there must be a way for the child to

learn these representations from the data available
3 Evolutionary constraint: it must not posit a rich,

evolutionarily implausible language faculty
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The argument from the poverty of the stimulus

Many different versions:
Hornstein and Lightfoot

People attain knowledge of the structure of their
language for which no evidence is available in the data
to which they are exposed as children.
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Pullum and Scholz (2002)

Children learn natural languages:
Rapidly
Consistently
Without explicit instruction
The data is sparse, incomplete and noisy
Uniform outcome

This cannot be accounted for by standard models of learning.
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Empirical version
Perfors et al. (2006)

1 The student is hungry
2 Is the student hungry?

3 The student who is in the garden is hungry.
4 Is the student who is in the garden hungry?
5 *Is the student who in the garden is hungry?

Children do not see examples of type 4, but produce the right
examples.
There is a factual problem.



The APS Supervised learning Unsupervised learning Distributional learning Structural descriptions Conclusion

Empirical version
Perfors et al. (2006)

1 The student is hungry
2 Is the student hungry?
3 The student who is in the garden is hungry.

4 Is the student who is in the garden hungry?
5 *Is the student who in the garden is hungry?

Children do not see examples of type 4, but produce the right
examples.
There is a factual problem.



The APS Supervised learning Unsupervised learning Distributional learning Structural descriptions Conclusion

Empirical version
Perfors et al. (2006)

1 The student is hungry
2 Is the student hungry?
3 The student who is in the garden is hungry.
4 Is the student who is in the garden hungry?
5 *Is the student who in the garden is hungry?

Children do not see examples of type 4, but produce the right
examples.
There is a factual problem.



The APS Supervised learning Unsupervised learning Distributional learning Structural descriptions Conclusion

The argument from the poverty of the stimulus

Chomsky (1965), pp. 57-58

"In brief, it seems clear that the present situation with regard to the
study of language learning is essentially as follows. We have a
certain amount of evidence about the character of the generative
grammars that must be the "output" of an acquisition model for
language. This evidence shows clearly that taxonomic views of
linguistic structure are inadequate and that knowledge of grammatical
structure cannot arise by application of step-by-step inductive
operations (segmentation, classification, substitution procedures,
filling of slots in frames, association, etc.) of any sort that have been
developed within linguistics, psychology, or philosophy. Further
empiricist speculations contribute nothing that even faintly suggests a
way of overcoming the intrinsic limitations of the methods that have
so far been proposed and elaborated.”
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Linguistic nativism
The Language Instinct

Definition
Linguistic nativism is the claim that language aquisition
proceeds largely through innate, language-specific
mechanisms and representations.
A lot of grammar is encoded in the genome.

Vacuous claim
Clearly we have some innate ability to acquire language: since
we do and lobsters don’t.
The debate is whether it is domain-specific or not.

Chomsky seems no longer to subscribe to this view.
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The formal version of the APS

Ken Wexler:
The strongest most central arguments for

innateness thus continue to be the arguments from
APS and learnability theory. . . . The basic results of
the field include the demonstration that without serious
constraints on the nature of human grammar, no
possible learning mechanism can in fact learn the
class of human grammars.

The formal arguments do not support linguistic nativism,
even under the most optimistic interpretations.

(Clark and Lappin, 2010)



The APS Supervised learning Unsupervised learning Distributional learning Structural descriptions Conclusion

Problem with the argument

Key distinction:
Hypothesis class of a learning algorithm
The class of languages that the algorithm can learn

One can show that the learnable class is restricted in some
way, but you can’t show that the former needs to be restricted.

Example
Under distribution-free uniform PAC-learning

The learnable class must have finite VC-dimension
The hypothesis class does not need to be bounded
(Haussler and Kearns 1991)
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Study of Language acquisition

Pinker (1990)
To understand how X is learned, you first have to understand
what X is.

Crain and Pietroski (2001)
First, one tries to find principles that characterize human
grammars; then one tries to determine which aspects of these
grammars could plausibly be learned from experience, and
which are more likely to be innately specified.
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Standard methodology

Step 1: Construct a descriptively adequate representation
Step 2: Try to design learning algorithms for those
representations
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Step 1
Construct a descriptively adequate grammar

This failed

No-one ever managed to make a descriptively adequate
grammar for any natural language, not even English.
In order to account for new facts (e.g. Swiss German)
representations were made more powerful and expressive.
Statistical parsers do not separate grammatical from
ungrammatical sentences (Okanohara and Tsujii, 2007;
Berwick and Fong, 2008)
Generative grammarians have largely abandoned the task
of constructing large scale grammars.
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Step 2
Come up with a learning algorithm

This also failed.
Learning even regular grammars is computationally hard:
Angluin and Kharitonov (1995)
We have some heuristic algorithms that can induce crude
constituent structure (Klein and Manning, 2004)
The classes of representations we need have even richer,
deeper and more abstract hidden structure: (LTAG,
ACG2,4, ...)
It is out of the question to construct learning algorithms for
these classes.
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Tension

Chomsky, 1986
To achieve descriptive adequacy it often seems

necessary to enrich the system of available devices,
whereas to solve our case of Plato’s problem we must
restrict the system of available devices so that only a
few languages or just one are determined by the given
data. It is the tension between these two tasks that
makes the field an interesting one, in my view.
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Principles and Parameters models

Principles and Parameters
Language is entirely innately specified apart from a finite
number of binary valued parameters

Evolutionarily implausible
No good learning model
No agreement on parameters
No tension
Currently being abandoned.
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Linguists don’t know what the representations are

A Cambridge quote

“At the most fundamental level, it is not clear that there is any
meaningful empirical motivation for the representational
assumptions of any current formal model of syntax.”
(Blevins, J., 2009)

Linguists cannot agree whether the head of “the cat” is “the” or
“cat”. Nor can they produce any empirical evidence to decide
between the two.
(Matthews, P.; 2007)

We don’t know what the representations are but we do
know that they are learnable!
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Reasonable Research Strategy

Slogan

Put learnability first!

If you construct a super-powerful class of languages with
no thought of learnability, you won’t be able to learn them.
Rather, design representations from the ground up to be
learnable.

Strategy

Step 1: build simple learnable representations
Step 2: gradually try to increase their expressive power,
while maintaining learnability
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Current NLP

Prehistory: manually constructed programs for a specific task.

Current solution
Use supervised learning from annotated data.

This has problems:
It is a poor solution from an engineering point of view:
knowledge engineering bottleneck
It is no solution to the cognitive science problem.
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POS tagging

In some languages the lexical class of a word is not determined
by its surface form.

Task
Given a sequence of words x1, x2, . . . xn

He rose dripping from the lake
He handed her the rose

Assign to each a POS tag: N,V , etc.
y1, . . . , yn

Standard approach
Ken Church’s HMM tagger:

Joint probabilistic model p(x1 . . . xn, y1, . . . yn)

HMM with states identified with POS tags yi

ML training – Viterbi decoding
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Supervised Parsing

Task
Given a sequence of words x1, . . . xn
Assign a latent tree constituent structure tree.
Data is a treebank

Geoff Sampson (1986) – APRIL
Stochastic model from SUSANNE corpus
Simulated annealing parser.

Charniak, Collins etc.
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Example of plausible supervision

Sometimes it is cognitively plausible to have a supervised
learning:

Stress assignment

Lexical specification: récord/recórd
Phonologically specified: always on the penultimate
syllable

Supervised learning problem: given unknown word where is the
stress?

Morphological

English past tense: “the fruit fly of linguistics” Pinker
walk/walked, go/went, break/broke
plausible that the learner can identify pairs
Supervised learning problem – learn transduction Σ∗ → Σ∗
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Unsupervised learning

Two motivations in CL –
Annotation bottleneck

Resource poor languages
Huge amounts of data

Cognitive modelling

Tasks
POS induction (Clark, 2003)
Segmentation – NPB (Goldwater, Johnson et al.)
Morphology learning (Goldsmith, 2001)
Grammar induction
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Grammar induction

This is the central problem:

Regular languages

Other problems are largely modelled by regular or finite state
models:
we know (more or less) how to learn finite state models

Empirical approaches – implement algorithms
Theoretical approaches – grammatical inference
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Empirical results

Standard assumptions in unsupervised learning in NLP
Use real data: positive only,
Evaluate against gold standard – linguistic annotations
Use heuristic algorithms.

Klein and Manning, 2002

WSJ10 – sentences of length < 10 from WSJ
Evaluate using modified PARSEVAL metrics
Binary tree branching constraint with distributional
heuristic.
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Two problems of grammar induction

Information theoretic problems
Absence of negative data (Gold, 1967)
VC-dimension (Vapnik, 1998)
Sparsity, Noise etc.

We know how to attack these problems: MDL, NPB
Not specific to language
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Two problems of grammar induction

Computational problems
Complexity of finding the best hypothesis

Gold (1978), Kearns and Valiant (1989) . . .
Specific to certain classes of representation
Often based on embedding cryptographic problems in
learning problems

Tractable Cognition Thesis (van Rooij, 2008)

Human cognitive capacities are constrained by the fact that
humans are finite systems with limited resources for
computation.

Too hard to try to solve both of these problems together.
Here we try to solve the second and assume the first has been
dealt with.
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Overview

Inefficient Efficient
Positive data and MQs Gold (1967) ?
Stochastic data Horning (1969) ?

Angluin (1988)
Chater and Vitanyi (2007)
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Regular inference
A success story

Paradigm Learnable class
Positive Data reversible languages Angluin (1982)
Queries regular languages Angluin (1987)
Positive and Negative regular languages Oncina and Garcia (1992)
Stochastic data acyclic PDFAs Ron et al (1994),

regular languages Carrasco and Oncina (1994)
regular languages Clark and Thollard (2004)

These results suggest the presence of probabilistic
data largely compensate for the absence of negative
data. (Angluin, 1988)

We will assume positive data and membership queries as a
place holder for more realistic models. (Clark and Lappin, 2009)
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Why are DFAs learnable?

All of these models learn the minimal DFA:

Residual languages

u−1L = {v |uv ∈ L}
right congruence classes

States
L(q) = {u|δ(q,u) ∈ QF}
strings generated from a state

The minimal DFA has states which exactly correspond to
residual languages.
It is objective.
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Empiricist models

Slogan

The structure of the representation should be based on the
structure of the language, not something arbitrarily imposed on
it from outside.

Identify some structure in the language
Show how that structure can be observed
Construct a representation based on that structure
Richer structures will give you more powerful
representations
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Go backwards

Normal direction
Function from representation to language
Context free grammar G → context free language L(G)
Non-terminal → set of strings derived from non-terminal

Opposite Direction
Function from language to representation
L → R(L)
From set of strings → representational primitive of formalism

Ideally L(R(L)) = L.
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Summary

Technical Content
Distributional lattice grammars

Richly structured context sensitive representation;
Class of languages seems a good match to the class of
natural languages;
Efficient, correct algorithms for learning based on
distributional learning;
Solid theoretical foundation in the theory of residuated
lattices
Formal results use a symbolic learning paradigm



The APS Supervised learning Unsupervised learning Distributional learning Structural descriptions Conclusion

Where’s the data?

We can use data to distinguish between competing
theories.
There are no satisfactory theories at the moment
Two candidates:

1 Construction grammar (Tomasello, Goldberg . . . )
2 Principles and Parameters (Chomsky, 1981, Yang 2002 . . . )

Examples and proof
Mathematical proof should be more convincing.
Examples are to illuminate rather than convince
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Basic assumptions

A finite set of symbols:
Σ = {the,a, cat ,dog, is, . . . ,assumption, . . . }
Σ∗ is the set of all finite strings.
L is the subset of grammatical sentences { the cat is dead, I ran
away . . . }
Σ∗ \ L = { the the, cat pattern helicopter, . . . }
Very crude: better to have a distribution over Σ∗
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Example

Σ = {a,b}
L = {anbn|n ≥ 0}
L = {λ,ab,aabb, . . . }
Σ∗ \ L = {a,b,ba,bb, . . .aabbb,aaba . . . }
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Learning problem

Given some information about L construct a representation G
such that G defines the language L.
Typically:

Sequence of examples w1,w2 . . .

Only constraint: {wi} = L
Very weak constraint: we compensate by allowing learner
to query whether w is in L
We require convergence to a right answer

Very limited source of information – no context, no semantics.
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Distributional learning
Zellig Harris

Default assumption
Generalise in some way from a set of examples.

Natural algorithmic idea:

Look at the doggy
Look at the car
Look at the biscuit
Look at the blue car
the doggy is over there
the biscuit is over there
. . .

Question: what classes of languages can be learned using this
approach?
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Problems

A classic example from Chomsky:

John is easy to please
John is eager to please

They are ready to eat

Displaced constituents
This is the book that John said that Mary had ...
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Distribution

Example
That man over there is bothering me

Split
A substring “man over”
A context “That _ there is bothering me”

This is “observable”
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Distribution

Classic idea from structuralist linguistics:

Context (or environment)

A context is just a pair of strings (l , r) ∈ Σ∗ × Σ∗.
(l , r)� u = lur
f = (l , r).
Special context (λ, λ)

Given a language L ⊆ Σ∗.

Distribution of a string

CL(u) = {(l , r)|lur ∈ L} = {f |f � u ∈ L}

“Distributional Learning” models/exploits the distribution of
strings;
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Example

L = {anbn|n ≥ 0}
CL(a) = {(λ,b), (a,bb), (a,abbb) . . . }
CL(aab) = {(λ,b), (a,bb), . . . }
CL(aaabb) = {(λ,b), (a,bb), . . . }

English

CL(cat) = { look at the _, the _ is on the mat . . . }
CL(dog) = { look at the _, the _ is on the mat . . . }
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Distributional learning

Several reasons to take distributional learning seriously:
Cognitively plausible (Safran et al)
It works in practice: large scale lexical induction (Curran, J.
2003)
Linguists use it as a constituent structure test (Carnie, A,
2008)
Historically, PSGs were intended to be the output from
distributional learning algorithms.

Chomsky (1968/2006)
“The concept of "phrase structure grammar" was explicitly
designed to express the richest system that could reasonable
be expected to result from the application of Harris-type
procedures to a corpus.”
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Distributional learning

Try to predict CL(u)

Learn some finite representation G that defines
φG : u 7→ CL(u)
φG : Σ∗ → 2Σ∗×Σ∗

(λ, λ) ∈ CL(u) iff u ∈ L

Two problems

CL(u) will normally be infinite; so we need some
representation Y
There are an infinite number of strings u in Σ∗; so we need
some way of computing φ(uv) from φ(u) and φ(v).
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Finite representation

Set of contexts
Take a finite set of contexts F
Including at least (λ, λ)

Finite set of substrings

Take a finite set of substrings K
Including at least λ and Σ
i.e. All |w | ≤ 1

Any language

L is an arbitrary subset of Σ∗

Data we need is L ∩ (F � KK )
F � KK = {luvr |(l , r) ∈ F ,u, v ∈ K}
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Partition

Congruence classes
We can partition the strings into
[u] = {v |v ≡L u}

Example: L = {anbn|n ≥ 0}
[a] = {a}
[ab] = {ab,aabb, . . . }
[aab] = {aab,aaabb, . . . }
. . .

[λ] = {λ}
[ba] = {ba,bba, . . . }
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Context free grammar

Suppose we have a grammar and L(N) is the set of strings
generated by non-terminal N.

We have a rule N → PQ
This means that L(N) ⊇ L(P)L(Q).

Backwards
Objectively define a collection of sets of strings X ,Y ,Z
Suppose X ⊇ YZ
Then we add a rule X → YZ .
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Example

Congruence classes have nice properties!

[u][v ] ⊆ [uv ]
[uv ] → [u][v ]

Problem
Hard to tell whether u ∈ [v ]
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Example
L = {anbn|n ≥ 0}

[a] = {a}, [abb] = {abb,aabbb, . . . }
[a][aab] = {aabb,aaabbb . . . } ⊆ [aabb] = [ab]

Grammar
S → [ab],S → [λ]

[a] → a, [b] → b, [λ] → λ

[ab] → [aab][b], [ab] → [a][b], [ab] → [a][abb]

[aab] → [a][ab], [abb] → [ab][b]

Plus [ba] → [b][ba] . . .

Plus [a] → [λ][a] . . .
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Two Distributional Strategies

Strings

[u] = {v |v ≡L u}
Congruence classes: these are the smallest possible sets

Contexts
C[l , r ] = {v |lvr ∈ L}
These are the largest possible sets.

(If the languages are substitutable then they coincide)
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Old concept

Myhill, 1950
I shall call a system regular if the following holds for all
expressions µ, ν and all wffs φ, ψ each of which contains an
occurrence of ν: If the result of writing µ for some occurrence of
ν in φ is a wff, so is the result of writing µ for any occurrence of
ν in ψ. Nearly all formal systems so far cnstructed are regular;
ordinary word-languages are conspicuously not so.

Clark and Eyraud, 2005

A language is substitutable if lur , lvr , l ′ur ′ ∈ L means that
l ′vr ′ ∈ L.

Why the delay?
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Congruence class results

Positive data alone
lur ∈ L and lvr ∈ L implies u ≡L v
Polynomial result from positive data. (Clark and Eyraud, 2005)
k -l substitutable languages, Yoshinaka (2008)

Stochastic data
If data is generated from a PCFG
PAC-learn unambiguous NTS languages, Clark (2006)

Membership queries
An efficient query-learning result
Pick a finite set of contexts F
Test if CL(u) ∩ F = CL(v) ∩ F
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Limitations

One symbol per congruence class just won’t work for natural
languages:

Congruence classes are very many and very close
together
Exact substitutability is rare – e.g. cat/dog

Learning model assumes that either they are identical or
they are completely unrelated.
Need to have a more powerful representation that
represents the structure of the congruence classes
Languages aren’t context free
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filled in with MQs
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Relation to CFGs

Define
Given a CFG G for each non-terminal N

Yield: Y (N) = {w |N ∗⇒ w}
Context: C(N) = {(l , r)|S ∗⇒ lNr}.

Clearly C(N)� Y (N) ⊆ L
Each non-terminal will be a rectangle – but not necessarily
maximal.
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Formally

Polar maps

S′ = {(l , r) ∈ F : ∀w ∈ S lwr ∈ L}
C′ = {w ∈ K : ∀(l , r) ∈ C lwr ∈ L}

Concept

Ordered pair 〈S,C〉

S ⊆ K the set of strings
C ⊆ F is a set of contexts

S′ = C and C′ = S

C(S) = 〈S′′,S′〉
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Partial order
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Greatest lower bound
Meet or X ∧ Y
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Formally

Partial order
〈Sx ,CX 〉 ≤ 〈SY ,CY 〉
iff SX ⊆ SY (or CX ⊇ CY )

Meet
〈Sx ,CX 〉 ∧ 〈SY ,CY 〉
is 〈Sx ∩ Sy , (Sx ∩ Sy )′〉

Concept lattice: Formal Concept Analysis

The set of all concepts form a complete lattice B(K ,D,F )
Top > = 〈K , ∅〉
Bottom ⊥ = 〈∅,F 〉
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Concatenation

Two concepts

〈Sx ,Cx〉 ◦ 〈SY ,CY 〉
Concatenate the sets of strings SxSy : a subset of KK
Take the set of contexts (SX SY )′ and make concept from that.
〈(SxSY )′′, (SX SY )′′′〉

Data
Increase D to be a subset of F � KK
{luvr |(l , r) ∈ F ,u, v ∈ K}
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Dyck language
λ, ab, abab, aabb, abaabb . . .

λ

a

b

ab

(λ, λ) (a, λ) (λ, b)

L = 〈{λ,ab}, (λ, λ)〉
A = 〈{a}, (λ,b)〉
B = 〈{b}, (a, λ)〉
>
⊥
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Dyck language

L ◦ L
SX = SY = {λ,ab}
SX SY = {λ,ab,abab}
(SX SY )′ = (λ, λ)
Result is L

B ◦ A
SX = {b},SY = {a}
SX SY = {ba}
(SX SY )′ = ∅
Result is >
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Dyck language
λ, ab, abab, aabb, abaabb . . .

L = 〈{λ,ab}, (λ, λ)〉
A = 〈{a}, (λ,b)〉
B = 〈{b}, (a, λ)〉
>
⊥

> L A B ⊥
> > > > > ⊥
L > L A B ⊥
A > A > L ⊥
B > B > > ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
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Constructing a representation

Natural question
We have this concatenation operation:
How do we use this to infer a representation?
A CFG, a TAG etc

This lattice is a representation already!

Recursive definition
u = a1 . . .ak

If we know C(a) for all a ∈ Σ and we can concatenate the
concepts
Then we can compute C(a1a2 . . .ak ) as
C(a1) ◦ C(a2) . . . C(ak )

If C(u) contains (λ, λ) then it is in the language.
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Representation

Compute approximation to distribution

φG : Σ∗ → B(K ,D,F )

φ(a) = C(a) — look it up
φ(ab) = φ(a) ◦ φ(b)

etc
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A problem

Not associative
aab

C(a) ◦ (C(a) ◦ C(b)) = C(a)

(C(a) ◦ C(a)) ◦ C(b) = > ◦ C(b) = >

Combining
We want the best possible estimate – the one with the most
contexts:

If one bracketing gives X and another gives Y
we can predict X ∧ Y
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Representation

Definition
A distributional lattice grammar (DLG) is a tuple 〈K ,D,F 〉
where

K is a finite subset of strings that includes Σ and λ
F is a finite set of contexts that includes (λ, λ)

D is a finite subset of F � KK

Example
DLG for the Dyck language:

K = {λ,a,b,ab}
F = {(λ, λ), (a, λ), (λ,b)}
D = {λ,ab,abab,aabb}
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Representation

Definition
φ : Σ∗ → B(K ,D,F ).

φ(λ) = C(λ)

for all a ∈ Σ, (i.e. for all w , |w | = 1)
φ(a) = C(a)

for all w with |w | > 1,

φ(w) =
∧

u,v∈Σ+:uv=w

φ(u) ◦ φ(v)

Language

Define L(B(K ,L,F )) = {w : φ(w) ≤ C({(λ, λ)})}
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Dyck language

φ(a) = A, φ(b) = B
φ(aa) = >, φ(ab) = L, . . .
φ(aab) = φ(aa) ◦ φ(b) ∧ φ(a) ◦ φ(ab) = A
φ(abab) = . . .

φ(abababab) = φ(a) ◦ φ(bababab) ∧ · · · = L

φ(w) has feature (λ, λ) iff w is in Dyck language.
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Learnability

Data
Given a set K and some context F , we can figure out which
elements of F � KK are in L.
Probabilistically or not . . .

Search
How can we find suitable K and F?

Notation
D = L ∩ F � KK
〈K ,L ∩ F � KK ,F 〉 = 〈K ,L,F 〉
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Change the set of strings
J ⊆ K

Map

g from B(J,L,F ) to B(K ,L,F ) (from the smaller lattice to the
larger lattice) as g(〈S,C〉) = 〈C′,C〉.

Lemma
g(φJ(w)) ≤ φK (w)
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Increasing K

g(φJ(w)) ≤ φK (w) means that as we increase K the
language defined by 〈K ,L,F 〉 decreases monotonically
After a finite number of strings it will converge
It will always converge to a subset of L

(Intuitively, as the strings increase the sets of contexts shared
decrease)
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Power of Representation

Language class

Let L be the set of all languages L such that there is a finite set
of contexts F s.t. L = L(B(Σ∗,L,F ))

Includes
1 All regular languages
2 Some but not all CFLs
3 Some non context free languages
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Change the set of contexts
F ⊆ G

Map

f from B(K ,L,G) to B(K ,L,F ), (from larger to smaller) as
f (〈S,C〉) = 〈(C ∩ F )′,C ∩ F 〉.

Lemma
f (φG(w)) ≤ φF (w)

As we increase the set of contexts the language monotonically
increases.
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Search problem is trivial

Naive Algorithm

Start with F = {(λ, λ)},K = Σ ∪ {λ}
If we see a string that is not in our hypothesis, the
hypothesis is too small, and we add contexts to F
Add strings to K if it will change the lattice at all.

Clark, (CoNLL, 2010)
DLGs can be learnt from positive data and MQs
Polynomial update time
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Context sensitive example

MIX language (Bach, 1981)

{w ∈ {a,b, c}∗||w |a = |w |b = |w |c}

DLG example

Let M = {(a,b, c)∗}, we consider the language
L = Labc ∪ Lab ∪ Lac where Lab = {wd |w ∈ M, |w |a = |w |b},
Lac = {we|w ∈ M, |w |a = |w |c},
Labc = {wf |w ∈ M, |w |a = |w |b = |w |c}.
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Lattice

features for [n,m,n] features for [n,n,m]

[n,m,n]

[n+1,n,n+1] [n,n+1,n] [n,n,n]

[n+1,m,n]

[n+1,n+1,n][n+1,n+2,n][n+1,n,n]

[n,m,n+1]

[n,n+1,n+1][n+1,n,n+2] [n,n,n+1]

bottom

[n+1,n,m] [n,n+1,m] [n,n,m]

[n,n,m]d

top

(ac,)L ( ab,)

[n,m,n]e
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Context free languages

Finite Context Property
For a non-terminal N, if there is a finite set of contexts FN such
that L(G,N) = F ′

N , then it has the FCP.
CFGs with the FCP are representable by DLGs.

Not in DLG?
L = {anb|n > 0} ∪ {ancm|m > n > 0}



The APS Supervised learning Unsupervised learning Distributional learning Structural descriptions Conclusion

Switch to non context-free representation

CFG inference idea
Build a CFG with one non-terminal for each concept
C[A] =

⋂
(l,r)∈A C[l , r ]

Problem: exponentially many non-terminals – we can’t parse.

Parsing

We can lazily represent the huge CFG but we cannot parse
Note: if C[A]

∗⇒ w and C[B]
∗⇒ w

then w ∈ C[A] ∩ I[B] = C[A ∪ B]
Take the union (roughly) of all the sets and combine them.

Shift to a CS representation for efficient computation!
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A serious criticism

Montague

“Syntax is only interesting as a precursor to semantics”

These models just tell you whether a string is in the
language or not, which is useless and “irrelevant”.
The standard assumption is that each sentence has a
hidden tree structure that we need to recover to do
semantics.
We need to learn this constituent structure



The APS Supervised learning Unsupervised learning Distributional learning Structural descriptions Conclusion

Associativity

Formally the key point about hierarchical representations is that
they are not associative.

x + (y + z) = (x + y) + z
String concatenation is associative – abc
Tree operations are not: (a(bc)) 6= ((ab)c)
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Obligatory choice

S

John
likes cakes

S

John likes
cakes
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Free word order in Finnish

“Anna gets flowers”

Anna sai kukkia
Anna kukkia sai
sai kukkia Anna
sai Anna kukkia
kukkia sai Anna
kukkia Anna sai
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Bracketing paradoxes
Sproat, 1992

unrulier
[un[rulier ]] or [[unruli]er ]
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Romance clitics

PP

a NP

la mode

PP

aux enfants

Italian: glielo, andarsene
German: an dem Tisch → am Tisch
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Non constituent coordination

S

John VP

likes cakes

S

X

X

John likes

but X

Mary hates

cakes
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Movement

NP

the N

book
John

gave me

S

John VP

gave me
NP

a book
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Cross-serial dependencies
Shieber 82

In principle an unbounded number of crossed dependencies is possible. However, except for the first
and last verb any permutation of the NPs and the verbs is grammatical as well (even though with a
completely different dependency structure since the dependencies are always cross-serial). Therefore,
the string language of Dutch cross-serial dependencies amounts roughly to {nkvk | k > 0} which is a
context-free language.

Bresnan et al. (1982) argue that the SGC of CFGs is too limited for the Dutch examples. Weakness
of the argument: an argument about syntactic structure makes always certain theoretical stipulations.
Although it is very probable, it does not absolutely prove that, even using different syntactic theories,
there is no context-free analysis for the Dutch examples. It only shows that the syntactic structures
Bresnan et al. think the appropriate ones cannot be obtained with a CFG.

Shieber’s argument about Swiss German cross-serial dependencies is more convincing since it relies only
on the string language, i.e., it concerns the WGC of CFGs. The Swiss German data:

(6) ... das mer em Hans es huus hälfed aastriiche
... that we Hans-DAT house-ACC helped paint

‘... that we helped Hans paint the house’

(7) ... das mer d’chind em Hans es huus lönd hälfe aastriiche
... that we the children-ACC Hans-DAT house-ACC let help paint

‘... that we let the children help Hans paint the house’

Swiss German uses case marking and displays cross-serial dependencies.

Proposition 5 The language L of Swiss German is not context-free (Shieber 1985).

Argumentation goes as follows: Assume that L is context-free. Then the intersection of a regular language
with the image of L under a homomorphism must be context-free as well. Find a homomorphism and a
regular language such that the result is a non context-free language. Contradiction.

Further possible sentence:

(8) ... das mer d’chind em Hans es huus haend wele laa hälfe aastriiche
... that we the children-ACC Hans-DAT house-ACC have wanted let help paint
‘... that we have wanted to let the children help Hans paint the house’

Swiss German allows constructions of the form (Jan säit) (‘Jan says’)das mer (d’chind)i (em Hans)j es
huus haend wele (laa)i (hälfe)j aastriiche. In these constructions the number of accusative NPs d’chind
must equal the number of verbs (here laa) selecting for an accusative and the number of dative NPs em
Hans must equal the number of verbs (here hälfe) selecting for a dative object. Furthermore, the order
must be the same in the sense that if all accusative NPs precede all dative NPs, then all verbs selecting
an accusative must precede all verbs selecting a dative.

Homomorphism f :

f(“d’chind”) = a f(“Jan säit das mer”) = w
f(“em Hans”) = b f(“es huus haend wele”) = x

f(“laa”) = c f(“aastriiche”) = y
f(“hälfe”) = d f(s) = z otherwise

6
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Phonology

Syllables don’t coincide with words

Liaison and enchainement in French
p@tItãfã
petit enfant
(small child)
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Alternations

NP

a N1

AP

very annoying

whine

NP

an N1

AP

annoying

whine

Italian: il/lo; Slovenian: s/z . . .
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Etc.

Tmesis
Interjections
Discontinuous constituents
German scrambling
. . .
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Standard linguistic counter-arguments

None of these arguments are original or fatal;

Rigid tree structure is not overt
Allow movement of words and phrases from place to place
Allow a rich variety of phonologically null constituents
Distinction between levels of phonology and syntax each
with separate trees
Use TAG based formalisms with a richer set of tree
operations
Core-periphery distinction
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Uncontroversial

[Bouma, 1989] These and other such arguments
suggest that there is no such thing as a fixed
constituent structure, but that the order in which
elements combine with each other is rather free.

Many theories allow flexible constituency: multiple trees for
the same unambiguous sentence
Structural completeness is an advantage for processing.
CCG (Steedman, 1997)
Dependency grammar
Associative Lambek calculus
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The Full lattice

Suppose K is every string
Suppose F is every context Σ∗ × Σ∗

We have the lattice B(L)
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L = (ab)∗

⊥ = 〈∅, Σ∗ × Σ∗〉

〈[a], [λ, b], 〉 〈[b], [a, λ]〉 L = 〈[ab] ∪ [λ], [λ, λ]〉 〈[ba] ∪ [λ], [a, b]〉

1 = 〈[λ], [a, b] ∪ [λ, λ]〉

⊤ = 〈Σ∗, ∅〉
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Residuated lattice

This is a complete residuated lattice; written B(L).
Basis of CG which has the cleanest syntax-semantics interface.

Concatenation is a monoid: associative and with unit
C({λ}).
Lattice : X ∧ Y is a greatest lower bound, X ∨ Y is a least
upper bound; X ≤ Y is a partial order.
The two operations interact properly, and we have binary
operations /, and \ such that
X ◦ Y ≤ Z iff X ≤ Z/Y iff Y ≤ X\Z
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Idea for structural descriptions
“Parse trees”

We have a recognizer but we want a parser:

Admissible structures for a string w

Each span has a concept ψ[i , j]
ψ[i , j] ≥ C(w [i : j])
ψ[i , j] ≥

∧
k ψ[i , k ] ◦ ψ[k , j]

ψ[0, l] ≤ C(L)

Maximal structures
The set of maximal structures under the natural partial order
can be viewed as the set of structural descriptions.
Discard > symbols and construct a graph or DAG.
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Idea for structural descriptions
Spurious ambiguity

Structural completeness
If we have the full lattice, then we can have any binary tree.

X

C(u) C(v)
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Idea for structural descriptions
Spurious ambiguity

Structural completeness
If we have the full lattice, then we can have any binary tree.

X

C(u) C(u)\X

X

X/C(v) C(v)
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Idea for structural descriptions
Spurious ambiguity

Structural completeness
If we have the full lattice, then we can have any binary tree.

X

X/(C(u)\X ) C(u)\X

X

X/C(v) (X/C(v))\X
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Why the delay?

The perceived problem
Not enough to learn a grammar, you have to learn the right
grammar.
You have to learn constituent structure
Distributional structure is a product of hidden constituent
structure.

Maybe distributional structure is all there is?
If we can

represent (weak) syntax
learn
support semantic interpretation?
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Linguistic concepts

me/him/us/them/(7)

(2)her/(1)

it/(1)

you/(1)

(0)

(16)

my/his/our/their/(5) (7)

(4)he/she/(3)

I/(1)

we/they/(3)
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Conclusion

Jackendoff (2008)
1 Descriptive constraint: the class of languages must be

sufficiently rich to represent natural languages
2 Learnability constraint: there must be a way for the child to

learn these representations from the data available
3 Evolutionary constraint: it must not posit a rich,

evolutionarily implausible language faculty

An approach that potentially satisfies all three criteria.
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