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Two uses of Monte Carlo methods

1. For solving problems of probabilistic inference 
involved in developing computational models

2. As a source of hypotheses about how the mind 
might solve problems of probabilistic inference 



Answers and expectations

• For a function f(x) and distribution P(x), the 
expectation of f with respect to P is

• The expectation is the average of f, when x is 
drawn from the probability distribution P

EP(x ) f (x)[ ]= f (x)P(x)
x

∑



Answers and expectations

• Example 1: The average # of spots on a die roll
– x = 1, …, 6, f(x) = x, P(x) is uniform 

• Example 2: The probability two observations 
belong to the same mixture component
– x is an assignment of observations to components,  

f(x) = 1 if observations belong to same component  
and 0 otherwise, P(x) is posterior over assignments 

EP(x ) f (x)[ ]= f (x)P(x)
x

∑



The Monte Carlo principle

• The expectation of f with respect to P can be 
approximated by

where the xi are sampled from P(x)

• Example 1: the average # of spots on a die roll

EP(x ) f (x)[ ] ≈
1
n

f (xi)
i=1

n

∑



The Monte Carlo principle

EP(x ) f (x)[ ] ≈ f (xi)
i=1

n

∑QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

The law of large numbers



When simple Monte Carlo fails

• Efficient algorithms for sampling only exist for a 
relatively small number of distributions
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When simple Monte Carlo fails

• Efficient algorithms for sampling only exist for a 
relatively small number of distributions

• Sampling from distributions over large discrete 
state spaces is computationally expensive
– mixture model with n observations and k components, 

kn possible component assignment for observations
• Sometimes we want to sample from distributions 

for which we only know the probability of each 
state up to a multiplicative constant



Why Bayesian inference is hard

P(h | d) =
P(d | h)P(h)
P(d | ′ h )P( ′ h )

′ h ∈ H
∑

Evaluating the posterior probability of a hypothesis 
requires summing over all hypotheses 

(statistical physics: computing partition function)



Modern Monte Carlo methods

• Sampling schemes for distributions with large state 
spaces known up to a multiplicative constant

• Two approaches:
– importance sampling
– Markov chain Monte Carlo

• (Major competitors… variational inference, 
sophisticated numerical quadrature methods)



Importance sampling

Basic idea: generate from the wrong distribution, 
assign weights to samples to correct for this

E p(x ) f (x)[ ]= f (x)p(x)dx∫
= f (x) p(x)

q(x)
q(x)∫ dx

≈
1
n

f (xi
i=1

n

∑ ) p(xi)
q(xi)

for xi ~ q(x)



Importance sampling

works when sampling from proposal is easy, target is hard



An alternative scheme…

E p(x ) f (x)[ ] ≈
1
n

f (xi
i=1

n

∑ ) p(xi)
q(xi)

for xi ~ q(x)

E p(x ) f (x)[ ] ≈
f (xi

i=1

n

∑ ) p(xi)
q(xi)

p(xi)
q(xi)i=1

n

∑
for xi ~ q(x)

works when p(x) is known up to a multiplicative constant 



Optimal importance sampling

• Asymptotic variance is

• This is minimized by

σ IS
2 = E p(x ) ( f (x) − E p(x )[ f (x)])2 p(x)

q(x)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

q(x) ∝ f (x) − E p(x )[ f (x)] p(x)



Optimal importance sampling





Likelihood weighting

• A particularly simple form of importance 
sampling for posterior distributions

• Use the prior as the proposal distribution
• Weights:

p(h | d)
p(h)

=
p(d | h)p(h)

p(d)p(h)
=

p(d | h)
p(d)

∝ p(d | h)



Approximating Bayesian inference

Sample from the prior, weight by the likelihood

E p(h |d ) f (h)[ ] ≈
p(d | h( i))

i
∑ f (h(i))

p(d | h(i))
i

∑



Exemplar models
• Assume decisions are made by storing previous 

events in memory, then activating by similarity
• For example, categorization:

where x(i) are exemplars, s(x,x(i)) is similarity, 
I(x(i)∈c) is 1 if x(i) is from category c

Pchoice (c | x) =
s(x, x(i))

i
∑ I(x( i) ∈ c)

s(x, x( i))
i

∑

(e.g., Nosofsky, 1986)



Exemplar models
• Assume decisions are made by storing previous 

events in memory, then activating by similarity
• General version:

where x(i) are exemplars, s(x,x(i)) is similarity, 
f(x(i)) is quantity of interest

response(x) =
s(x, x(i))

i
∑ f (x( i))

s(x, x(i))
i

∑



Equivalence

E p(h |d ) f (h)[ ] ≈
p(d | h( i))

i
∑ f (h(i))

p(d | h(i))
i

∑

response(x) =
s(x, x(i))

i
∑ f (x( i))

s(x, x(i))
i

∑

Bayes can be approximated using exemplar 
models, storing hypotheses sampled from prior



Predicting the future

• Assume people store examples of ttotal in 
memory, and activate after observing t
– likelihood is 0 for ttotal < t, else 1/ttotal

• Explore different kinds of constraints:
– “memory limited”: limit total number recalled
– “computation limited”: limit total number > ttotal



Predicting the future



Importance sampling
• A general scheme for sampling from complex 

distributions that have simpler relatives
• Simple methods for sampling from posterior 

distributions in some cases (easy to sample from 
prior, prior and posterior are close)

• Can be more efficient than simple Monte Carlo
• Links to exemplar models in psychology
• Also provides a solution to the question of how 

people can update beliefs as data come in…



Updating distributions over time…

• Computational costs are compounded when 
data are observed incrementally…
– recompute P(h|d1, …, dn) after observing dn

• Exploit “yesterday’s posterior is today’s prior”

• Repeatedly using importance sampling results 
in an algorithm known as a “particle filter”

P(h | d1 ,...,dn ) ∝ P(dn | h)P(h | d1 ,...,dn−1)



Particle filter
P(h | d1 ,...,dn ) ∝ P(dn | h)P(h | d1 ,...,dn−1)

samples from 
P(h|d1,…,dn-1)

weight by
P(dn|h)

weighted atoms
P(h|d1,…,dn)

samples from
P(h|d1,…,dn)



Dynamic hypotheses

d1 d2 d3 d4

h1 h2 h3 h4

P(h4 | d1,...,d4 ) ∝ P(d4 | h4 )P(h4 | d1,...,d3)

= P(d4 | h4 ) P(h4 | h3)P(h3 | d1,...,d3)
h3

∑



Particle filters
P(h4 | d1,...,d4 ) ∝ P(d4 | h4 ) P(h4 | h3)P(h3 | d1,...,d3)

h3

∑

samples from 
P(h3|d1,…,d3)

samples from 
P(h4|d1,…,d3)

sample from
P(h4|h3)

weight by
P(d4|h4)

weighted atoms
P(h4|d1,…,d4)

samples from
P(h4|d1,…,d4)



The promise of particle filters
• A general scheme for defining rational process 

models of updating over time       (Sanborn et al., 2006)

• Model limited memory, and produce order effects
(cf. Kruschke, 2006)

• Used to define rational process models of…
– categorization (Sanborn et al., 2006)
– associative learning (Daw & Courville, 2008)
– changepoint detection (Brown & Steyvers, 2009)
– sentence processing (Levy et a1., 2009)
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Two uses of Monte Carlo methods

1. For solving problems of probabilistic inference 
involved in developing computational models

2. As a source of hypotheses about how the mind 
might solve problems of probabilistic inference 

3. As a way to explore people’s subjective 
probability distributions

Three



Human learning

Categorization

Causal learning

Function learning

Representations

Language

Experiment design

…

Machine learning

Density estimation

Graphical models

Regression

Nonparametric Bayes

Probabilistic grammars

Inference algorithms

…



Two deep questions

• What are the biases that guide human learning?
– prior probability distribution P(h)

• What do mental representations look like?
– category distribution P(x|c)

lim
t →∞

P(x(t ) = i | x(0)) = π i



Two deep questions

• What are the biases that guide human learning?
– prior probability distribution on hypotheses, P(h)

• What do mental representations look like?
– distribution over objects x in category c, P(x|c)

Develop ways to sample from these distributions 



• Variables x(t+1) independent of history given x(t)

• Converges to a stationary distribution under 
easily checked conditions (i.e., if it is ergodic)

x x x x x x x x

Transition matrix
T = P(x(t+1)|x(t))

Markov chains



Markov chain Monte Carlo

• Sample from a target distribution P(x) by 
constructing Markov chain for which P(x) is 
the stationary distribution

• Two main schemes:
– Gibbs sampling
– Metropolis-Hastings algorithm



Gibbs sampling

Particular choice of proposal distribution

For variables x = x1, x2, …, xn

Draw xi
(t+1) from P(xi|x-i)

x-i = x1
(t+1), x2

(t+1),…, xi-1
(t+1)

, xi+1
(t)

, …, xn
(t)

(this is called the full conditional distribution)



Gibbs sampling

(MacKay, 2002)



Iterated learning
(Kirby, 2001)

What are the consequences of learners 
learning from other learners?

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.



Objects of iterated learning

How do constraints on learning (inductive biases) 
influence cultural universals?

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.
QuickTime™ and a

TIFF (Uncompressed) decompressor
are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.



Analyzing iterated learning

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

PL(h|d): probability of inferring hypothesis h from data d

PP(d|h): probability of generating data d from hypothesis h

PL(h|d)

PP(d|h)

PL(h|d)

PP(d|h)



Analyzing iterated learning

d0 h1 d1 h2PL(h|d) PP(d|h) PL(h|d)
d2 h3

PP(d|h) PL(h|d)

Σd PP(d|h)PL(h|d)
h1 h2Σd PP(d|h)PL(h|d)

h3

A Markov chain on hypotheses

d0 d1Σh PL(h|d) PP(d|h)
d2Σh PL(h|d) PP(d|h) Σh PL(h|d) PP

A Markov chain on data



Iterated Bayesian learning

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

PL(h|d)

PP(d|h)

PL(h|d)

PP(d|h)

PL (h | d) =
PP (d | h)P(h)
PP (d | ′ h )P( ′ h )

′ h ∈ H
∑

Assume learners sample from their posterior distribution:



Stationary distributions

• Markov chain on h converges to the prior, P(h)

• Markov chain on d converges to the “prior 
predictive distribution”

P(d) = P(d | h)
h
∑ P(h)

(Griffiths & Kalish, 2005)



Explaining convergence to the prior

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

PL(h|d)

PP(d|h)

PL(h|d)

PP(d|h)

• Intuitively: data acts once, prior many times
• Formally: iterated learning with Bayesian agents 

is a Gibbs sampler on P(d,h)

(Griffiths & Kalish, 2007)



Iterated function learning

• Each learner sees a set of (x,y) pairs
• Makes predictions of y for new x values
• Predictions are data for the next learner

data hypotheses

(Kalish, Griffiths, & Lewandowsky, 2007)



Function learning experiments

Stimulus

Response
Slider

Feedback

Examine iterated learning with different initial data



1          2           3          4          5          6          7           8          9
IterationInitial

data



Iterated predicting the future

• Each learner sees values of t
• Makes predictions of ttotal

• The next value of t is chosen from (0, ttotal)

data hypotheses

(Lewandowsky, Griffiths & Kalish, 2009)

A movie has made 
$30 million so far

$60 million total



Chains of predictions
t to

ta
l

Iteration Iteration

t to
ta

l

Movie grosses Poems

(Lewandowsky, Griffiths & Kalish, 2009)



Stationary distributions

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

(Lewandowsky, Griffiths & Kalish, 2009)



Identifying inductive biases
• Concept learning

(Griffiths, Christian, & Kalish, 2008)

• Reproduction from memory
(Xu & Griffiths, 2008)

• Learning linguistic frequencies
(Reali & Griffiths, 2009)

• All show convergence to priors…

“DUP”



Comparing to universals…

(Xu, Dowman, & Griffiths, in press)

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.



Metropolis-Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970)

Step 1: propose a state (we assume symmetrically)

Q(x(t+1)|x(t)) = Q(x(t))|x(t+1))

Step 2: decide whether to accept, with probability

Metropolis acceptance 
function

Barker acceptance 
function



Metropolis-Hastings algorithm

p(x)



Metropolis-Hastings algorithm

p(x)



Metropolis-Hastings algorithm

p(x)



Metropolis-Hastings algorithm

A(x(t), x(t+1)) = 0.5

p(x)



Metropolis-Hastings algorithm

p(x)



Metropolis-Hastings algorithm

A(x(t), x(t+1)) = 1

p(x)



Sampling subjective quantities
• Assume we want to gather information about a 

subjectively represented non-negative quantity f(x)

• If people’s responses follow the Luce choice rule…

• …we can sample from p(x) ∝ f(x) using only 
pairwise comparison of alternatives (a 2AFC task)

Pchoice(x1) =
f (x1)

f (x1) + f (x2)

(Sanborn & Griffiths, 2008)



An example: categorization

Assume that a category (e.g., frogs) is represented 
by a subjective probability distribution, p(x|c)

Which animal is a frog?

Pchoice(x1) =
p(x1 | c)

p(x1 | c) + p(x2 | c)



Collecting the samples
Which is the frog? Which is the frog? Which is the frog?

Trial 1 Trial 2 Trial 3



Sampling from natural categories
Examined distributions for four natural categories: 

giraffes, horses, cats, and dogs

Presented stimuli with nine-parameter stick figures           
(Olman & Kersten, 2004)



Choice task



Samples from Subject 3
(projected onto plane from LDA)

(Sanborn & Griffiths, 2008)



Mean animals by subject

giraffe

horse

cat

dog

S1 S2 S3 S4 S5 S6 S7 S8



Marginal densities 
(aggregated across subjects)

Giraffes are 
distinguished by 
neck length, 
body height and 
body tilt

Horses are like 
giraffes, but with 
shorter bodies 
and nearly 
uniform necks

Cats have longer 
tails than dogs



Relative volume of categories
Minimum Enclosing Hypercube

Giraffe Horse Cat Dog
0.00004 0.00006 0.00003 0.00002

Convex hull content divided by enclosing 
hypercube content

Convex Hull



Discrimination method
(Olman & Kersten, 2004)



Parameter space for discrimination

Restricted so that most random draws were animal-like



MCMC and discrimination means



MCMC and the mind

• Markov chain Monte Carlo provides a way to 
sample from subjective probability distributions

• Many interesting questions can be framed in 
terms of subjective probability distributions
– inductive biases (priors)
– mental representations (category distributions)

• Other MCMC methods may provide further 
empirical methods…
– Gibbs for categories, adaptive MCMC, …



Papers:
http://cocosci.berkeley.edu

Questions:
tom_griffiths@berkeley.edu
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