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Graph-Based Representations
• Capture relational arrangements 
• Provide contextual information needed to disambiguate part-

identification
• Invariant to transformations (rotation, change in viewpoint, change of 

scale…)
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Learning with Graphs
The algorithms used to segment the primitives are not reliable, as 
a result there are both additional and missing nodes and 
variations in edge-structure.  

Hence image matching and recognition cannot be reduced to a 
simple graph isomorphism or even a subgraph isomorphism 
problem. Instead inexact graph matching methods are needed.

Little work on classification of sample structure and on learning 
representations of the extracted classes and group invariants.

Relatively little methodology available as vectorial methods from 
statistical machine learning are not easily applied on graphs
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Difficulties in Graph Learning
Since it is not clear how to convert a graph into a vectorial 
representation, applying standard pattern recognition techniques is 
not straightforward

 There is no natural ordering of nodes and edges

 Correspondences must be used to establish order

 The number of nodes and edges is not fixed

 Due to noise, occlusion, segmentation errors

 Not easily summarized

 Since they do not reside in a vector space, mean and covariance 
are hard to characterize

There have been some successful attempts at embedding graph into 
vector spaces, but they are not able to characterize the structural 
variation of the set
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Learning with graphs
Prototype learning: Requires model prototypes for classification. Uses 

nearest neighbor classification (requires distances). Recent interest in 
learning prototypes (graph median) (Bunke et al.)

Work with (dis) similarities: Can perform pariwise clustering or embed sets 
of graphs in a vector space using multidimensional scaling on 
similarities. (Bunke; Buhman; Luo+Torsello+Robles-Kelly). 

 Embed individual  graphs in a low dimensional space: Characterise 
structural variations in terms of statistical variation in a point-pattern. 
(Luo,Wilson)

Learn modes of structural variation: Understand how edge (connectivity) 
structure varies for graphs belonging to the same class. Requires 
correspondences of raw structure or alignment of an embedded one.
(Dickinson,Williams,Torsello).

Construct  generative  model: Borrow ideas from graphical model to 
construct  model for raw structures or point distribution model to for 
embedded graphs.  (Langley, Friedman, Koller, Torsello, Xiao)
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Learning Structure
Characterize the distribution of structure form a set 
of sample graphs: Understand how edge (connectivity) 
structure varies for graphs belonging to the same class. 

Build generative  model: Define  naïve model and use 
mixture of simple models to classify (density estimation in 
graph space)

Perform supervised/unsupervised classification of 
graphs
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Tree Union (Torsello and Hancock 2006)

Model T is composed of structure and sampling probability :

 The structural part is a tree with node set N and an order 
relation O⊆N×N

 The sample probability :N→[0,1] is a function that 
associates to each node the probability of being sampled

A sample is a tree t with node-set Nt ⊆N and hierarchy Ot: 
restriction to Nt of O. 

Sampling is removing node i with probability  i.
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Learning the model
The correspondences are needed to construct the generalized model 

 The generalized model is needed to estimate the correspondences

We adopted a description length approach to model estimate:

Edit distance used for estimating correspondences

Model-node entropy determine edit costs

● Start with every tree forming a 
separate model

● Iteratively merge the pair of trees 
that reduce the description length 
the most

● Stop when description length cannot 
be reduced further
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Generative Graph Model
We want to generalize the approach to graphs

Decouple structure, class membership, and observation parameters

Given a set of undirected graphs S, our goal is to learn a generative 
graph model G that can be used to describe the distribution of structural 
data and characterize the structural variation of the set

The naïve graph model is composed of

 A structural part G=(V,E)

 Where V are all the nodes that can be generated by the graph and 
E⊆V×V is the set of possible edges

 A stochastic part that encodes the variability in the observations

Assume that the model is a mixture of naïve models where 
observations of nodes and edges are independent of the others
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Generative Graph Model

θi probability of generating node I

Τij probability of generating node (i,j), conditioned on the generation 

of both i and j

Wn
i and We

ij generative models for the nodes and edges attributes

Note that θi and Wn
i need not to be independent (nor do Τij and We

ij )
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Correspondences
After we sample a graph g from G, we lose track of the correspondences 
between the sample’s nodes and the nodes of the model

A random permutation is applied to the nodes of the sample

Hence the observation probability of a graph depends on this unknown 
set of correspondences. 

In particular, given the set of correspondences σ between nodes in G 

and nodes in g, the probability of observing g from G is

Typically the correspondences are estimated using graph matching 
techniques. This is equivalent to say that
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Symmetry bias
Maximum likelihood estimation of correspondences introduces bias in 
the model estimation Whenever you have model symmetries

Common wisdom: ignore graphs

● Derives from result by Erdös Rényi (1963) that states that as n 
grows almost all graphs of size n have no non-trivial automorphism

Note that In this result asymmetry is a characteristic of the observation

 The model is actually maximally symmetric!
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Overcoming the Bias
● An alternative approach is to take the expectation over all the 

possible correspondences

● Note the |g| term taking into account the symmetries of g

• Can be rewritten as

– Generalizes the permanent to average quadratic assignment

● Averaging over all possible correspondences is not possible due to the 
super-exponential growth of the space

● Resort to an estimation approach: importance sampling approach to 
compute a fast-converging estimate of P(g|G)
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Correspondence Sampler
We can sample a correspondence as follows

 We start from an initial guess of the correspondences matrix M
– mih gives the probability that model node i corresponds to observation node h 

 We sample the correspondence for model node i picking a node j 
with probability mij

 Then, we condition M to the current match by taking into account 
the structural information between the sampled node and all the 
others

• Project to sub-bistocastic matrix minimizing KL divergence

The process is iterated until a complete set of correspondences σ has 
been sampled
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Example
model graph

1

1

1

1

Sample 1->1 (p=0.25)

Sample 2->4 (p=0.5)

8 correspondences each 
with probability 1/8
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Sampler Vs. Model Variance
How close is the sampler distribution to the posterior of the 
correspondences?

• For very high entropy models both the distribution will be 
approximately uniform

• For deterministic models the sampler becomes equivalent to 
the labeling procedure used by Babai, Erdos and Selkow to 
show that graph isomorphism is expected polynomial time.

– Convergence depend on degree distribution 
(heterogenity) 

– Use sampler to estimate |g| 

• We expect a peak at medium entropy levels, but in general 
approximates well posteriors when node independence 
assumption holds.
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Sampler Variance

Relative variance ( 2/2) of Montecarlo (red) and importance-sampling (blue) 
as a function of model entropy
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Learning the Model
Starting from an initially oversized model, we prune the number and 
size of the mixture components until we get an optimal model

We adopt a MML approach to guide model pruning

• Minimized the joint cost of a two part message 
– describing a probabilistic model for the data 

– describing the data given the model 

We choose the model that corresponds to the shortest two-part 
message Model symmetries
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Shock Graphs: Precision and Recall
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COIL-20: Precision and Recall
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Characterizing Symmetries

Work in progress!

• (partial) Symmetries are central to the 
characterization of model complexity

• Try to characterize symmetries of various graphs
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Quantum walks
• In his work David Emms used the interference 

patterns in (continuous time) quantum walks to 
match graphs

– Constructed an auxiliary structure by adding nodes 
corresponding to matches 

– When graphs are isomorphic destructive 
interference kept 0 amplitudes at the correct 
matches

• We use a similar approach to characterize axial 
symmetries in graphs
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Quantum Walk
• Continuous-time quantum walk

 U(t)=exp(-iLt)

• Start the walk with two nodes with opposite amplitudes and 
the rest 0

• The nodes on an axial symmetry with respect to those nodes 
will have 0 amplitude at all times

– (Hopefully )partial symmetries will have smaller 
amplitudes
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Axial Symmetries – threshold 0.001
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Axial Symmetries – threshold 0.01
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Axial Symmetries – threshold 0.1
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Axial Symmetries – threshold 0.15
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Axial Symmetries – threshold 0.2
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