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The computational machinery of the cortex consists of a
pizza-size 2-mm thick sheet of
more or less generic , cortical microcircuits”

If the brain applies probabilistic inference, these cortical microcircuits are
likely to provide a generically useful module for that. Of what nature could
that module be ?
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Local structure in generic cortical
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These generic computational modules would either have to be
genetically encoded to carry out probabilistic inference,
or automatically acquire this capability through plasticity
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Experimental data suggest that

vy . r 1 these ,soft WTA-circuits” in the
ARGV it cortex are stochastic:

» Spontaneous activity

 Large trial-to-trial variability



Problem for understanding synaptic plasticity:
Synapses are very complicated devices, and their plasticity is
only partially understood
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Fig. 30. Long-term potentiation raquires regulation not only of kinases but also of phos-
phatases. The phosphatase cascade mitiated by caleneurin shuts off a phosphatase inhibitor

and thereby disinhibts the protemn phosphatase, which can now mhubit the kinase cascade.
[Based on 92.]



STDP (= Spike-Timing-Dependent plasticity)
IS currently the best understood experimental method
for inducing synaptic plasticity

NN

Pre

T X i T T T »
-100 -50 0 50
At (ms)

The key mechanism of STDP is the interaction of the incoming EPSP with
the backpropagating action potential (BAP). The amplitude of the BAP is
modulated by neuromodulators, as well as other inputs to the same neuron.

One assumes that the LTP- and LTD-parts of STDP are implemented by separate
molecular mechanisms.



STDP curves that were used for our computer
experiments

—Simple STDP curve
- ==Complex STDP curve
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These STDP curves are qualitatively similar to the data of [Sjostrom et al., 2001]
for a rate of 20 Hz.



There are other kinds of use-dependent changes in
neurons

Example:

Use-dependent adaptation of the intrinsic excitability of a neuron: When a

neuron is made to fire for a number of times, its excitability may increase
(i.e., it fires with less excitatory input).

We included a rule for the adaptation of intrinsic excitability in our model.



Result: STDP induces implicit generative models in
the z-neurons of a stochastic-WTA circuit
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Membrane potential of this neuron:

p(zy fires at time t|y) =

up(t) = >0 wkiGi(t) + wio

This exponential firing rule fits experimental
data quite well [Jolivet et al., 2006]



Role of lateral inhibition in this context:
It implements the normalization
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Demonstrating the possibility of this idea in a concrete example:
We encode in the spike input to the circuit
spatial patterns that are
generated by a hidden generation process
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Uncovering for you (but not for the circuit)
the hidden process which generates these input patterns:

Gaussians with different centers in 2D, with priors 0.1, ...,
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Input Neurons

Output of the 4 z-neurons at the beginning, and after

having seen a 20 s stream of such input spike trains
(while STDP and excitability adaptation are active)

Weight vectors of the 4 z-

neurons (projected back into ~ Autonomous adaptation of

neuronal excitability
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Link between the STDP rule that was applied,
and probability theory

—Slimple STDP curve
- Clomplex STDP curve

The STDP rule
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causes each synaptic weight to converge (in fact, optimally fast) to the
log conditional probability

log p( presyn. neuron has fired just before time t / postsyn. neuron fires at time t)

(These log probabilities are shifted into the positive range by adding a constant term.)



Result: This simple stochastic WTA-circuit learns through STDP
(and adaptation of neuronal excitability)
to carry out Bayesian inference

More precisely: it learns to implement Bayes Theorem

euk (t)

Z{il et (t)

We have p(zy fires at time t|y) —

TL
where the membrane potential is defined by U (t) = wro + Z Wi * Yill)
i—1

If the weights and the bias encode suitable log-probabilities, then the
summation in this membrane potential implements multiplication of
probabilities (in the log-domain).

In particular: This can implement the multiplication in Bayes Theorem:

Resulting posterior distribution ‘ plk|w) - p(y|k, w)
plkly.w) = ‘

K
> p(Kw) - p(y|F W)

k=1
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reveals a mixture distribution, where jip; = €™* is the probability that r; assumes the value (1)

in the %&** multinomial of this mixture of & multinomials, with mixture coefficients 7, = ™+,

When the inputs are generated by a mixture of monomials, and are encoded by

spike trains as in the preceding example, these are those values to which the
weights converge under STDP:

log p( presyn. neuron has fired just before time t / postsyn. neuron fires at time t)



More abstract analysis of the behaviour of STDP, even when the

Input distribution is not a mixture of multinomials:
STDP approximates stochastic online EM for fitting the implicit
Internal model (a mixture of multinomials) to the

actual distribution of spike inputs to the circuit

STDP is applied only to the synapses of that z-neuron which fires. This application
of STDP increases the chance, that this neuron would fire again for the same
Input, hence it corresponds to the M-step of EM (one can prove rigorously that it
makes one step in the right direction).

Each change of a synaptic weight modifies the resulting guesses for the latent
variables. The E-step simply consists of applying for the next spike input y

the WTA-network with these slightly changed weights. In other words, in lack of
a teacher for supervised learning, the network uses the guess provided by the
current state of the WTA-circuit as a substitute teacher.

The general theory of EM (Expectation Maximization) guarantees that iterations of
these E- and M-steps yields convergence to a (local) optimum of the objective
function.

We refer to this new unsupervised learning principle for networks of spiking
neurons as SEM (spike-based EM)



The objective function that is minimized by this
application of SEM through STDP:

The Kullback-Leibler divergence between the external distribution of
spike inputs y and the implicit generative model:

KL(p"(y)||p(y|w)) Zp luci Py)

(y|w)

Each application of STDP makes a move in the direction of the M-step
of an application of stochastic online EM for minimizing this KL-divergence.

[Nessler, Pfeiffer, Maass, NIPS 2009] ;
journal version in preparation

Bernhard Nessler
Michael Pfeiffer




This unraveling of STDP as a spike-based EM approximation is
not limited to mixtures of multinomials as internal models,
and it does not require ,perfect®* WTA circuits

» [Habenschuss et al, in preparation]

« [BUsing et al, in preparation]




This theoretical understanding of unsupervised learning with STDP
makes it possible to generate networks of spiking neurons with quite
Impressive computational power and learning capability:
Application to a generic machine learning task (but WITHOUT
supervision): MNIST dataset

These are 50 random samples from the 70 000 samples in the MNIST dataset.
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Resulting implicit generative models of 100 z-neurons
after exposing the circuit to 300 s of spike inputs, where a different
sample of a handwritten digit is encoded in each window of 30 ms
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The resulting sparser and more reproducable spike output corresponds to
results on perceptual learning in neuroscience (which works without supervision).




external spike lateral

Application to a more brain-like discrimination task: R T
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Spike patterns: fixed Poisson spike trains at 15 Hz for 50 ms (colored); they are always
superimposed by 5 Hz noise Poisson spike trains (black)



These emerging detectors for spike-patterns
automatically generalize to time-warped variations
of these patterns

Input Spike Trains
T e T me, T e gy S e T ey et 0% N 5 . t.,t 4
P L t, A= |"“" -y -.}‘ Y R « x| PrAS A ke s e, o b .n?
¥ e - ¥ . e o weE ¥ .
P V] ‘.g,‘?ﬂi‘*f 1‘= e ::,: "o # B {‘I"**'i "& M Mran 4o, *"‘:‘. } . . tE . [ }:" &'!y ﬁfﬂf '?ﬁ LA
S Lt ST e T i e e o O S X e e g
= & . . . g e, e ) {",-‘ bl T g . . . | R - . L P I ¥ 2t E® L ST P
E L0 ";,: -'-..._,.. " i:_ * :.‘? :::‘ " “‘ : 1‘.: :: Wt Bl I, YIS t.:" . l""l*" +% 'E;,*‘ et ba ;“.b Lt
LX3 - -1 . * . - * ® * bt " 0]
5 4lf. ‘t'Et - |tt P ; ‘:::-,"‘I ",,, .."l“ . 1 [ #.' ‘ j|' ' : 2‘ 'h‘:r e P 1.-:-‘? % Tah : «:-’}n .J:.‘:‘ "
o PR sl g, e e L A L . . 3 e * at L 5 ., . * " -
= NI Sl B 1'“".-1- -..!.4 ot t-l.r,.?{z e s Ead LN e Gk T R
R R B A ) A PR AT - e s S A TR I SRR DA
* o LF ] o & * . s e 2 * * a L] - ®
0 " L % Pl e | oy our | * M S T Pl I y ae L3 e b P ther
1} 200 400 aon EDD 1000 1200
Firing Prokabilities of Qutput heurons
g T f T T T 1 T 1 T R f T
E | | | | | | | | | |
- | | | | | | | | | |
= 03 | | | | | | | | |
K= I I I I I I I I |
[T I | I [ | o 1 | I L [— | I
1} 200 400 aon EDD 1000 1200
Time [ms]
- Cufput Spike Trains
g 8 : [T Iﬂﬂl: : [T TNTTT T IIH : III[I‘I : TTT T IHI]III'I : T T T T : T T II: : MM
E:IIIIIII ; Lo | | ||||| [l | | |
5 3 | [ v ! CIEH v | | I ELIE
A 2 I o I I (I I I I o
=3 | 1] | | L CIILEL | L
= 200 400 °00 £00 1000 1200

Time [ms]



Experimentally testable predictions of those aspects of the
STDP rule that are critical for these results, and the underlying
theory that STDP approximates EM

—Slimple STDP curve
- == Complex STDP curve

1. Weight increases become exponentially smaller in dependence of the
current weight size

2. Weight decreases are independent of the current weight size.



Experimental data confirm both of these two predictions

1. Weight increases become exponentially smaller in dependence of the current

weight size
Theoretical prediction Experimental data
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See similar data by [Liao et al., 1992],

Noise does not harm the effectiveness of [Bi and Poo, 1998], [Sjéstrom et al., 2001]

the STDP rule

2. Weight decreases are independent of the current weight size.

[Jacob et al., J. of Neurophys. ,2007] report that weight decreases of STDP
are not correlated with the current weight size



Outlook on ongoing work
[Pecevski et al, in preparation]:

Networks of very similar neural circuit
moduls can implement Gibbs sampling in
arbitrary Bayesian network

Example:
A simple (but non-trvial)
Bayesian network
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Design of local computing moduls for implementing
Gibbs sampling

 We consider a Bayesian network B (directed acyclic graph) with discrete
variables {xq,zs, ...,z }

where each x,node has a set of parents PA(X))

p(X) = H P(x;|PA(z;))

« The conditional probability for sampling z conditioned on the other variables

p(z|r1y ey Te1) = R(r1, oo tim—1) - p(2| PA(2)) - H p(r|z, PA™(r))
r:z€ PA(r)

where PA™(r) = PA(r)\ {z}



A generic neural network module can
learn to represent this conditional distribution of z

soft
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Suitable STDP learning rules (applied to complete data
samples) yield exponential fast convergence to the desired
weight values (with regard to expected weight changes)

Expected size and direction of updates for two weights
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Computer test for a concrete Bayesian network:
It first learn the weights from complete samples by STDP, then
generates samples from the learnt distribution

This reproduces quite well the original distribution:
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Outlook

» This example suggests that we could consider brain activity as a
possible implementation of Gibbs sampling (as suggested in
Cognitive Science by Tenenbaum, Vul, and others)

* |t opens the door to an analysis of neuronal dynamics and brain
connectivity from a new perspective

 The brain may also have discovered more efficient sampling
methods (for constrained distributions), that yield faster
convergence to a stationary distribution



Conclusions of my talk

Generative versus discriminative learning:

| have shown that generative models can emerge even without
any explicit backwards propagation of internally generated
patterns. This implicit form of generative models is less in
conflict with data from neuroscience.

These implicit generative models, that are encoded in synaptic
weights (of forward connections) can provide the same
theoretically predicted benefits as explicit generative models
(including better generalization capability, see [Jordan and
Ghahramani, 2006])



Probabilistic inference as a possible framework for understanding the
organization of cortical computations:

* | have proposed a new understanding of the functional role of STDP as
spike-based EM (SEM)

« This principle suggests that Bayesian computation modules are
autonomously created in each WTA-circuit (that represents a posterior
distribution)

* Networks of such Bayesian computation modules provide a new model for
cortical computation on a probabilistic level

« This approach provides a functional explanation for the ubiquitous trial-to-
trial variability of neuronal responses to stimuli (and explain it as sampling
from an internally generated posterior distributions)

« The mysterious recurrent connectivity structure of cortical networks of
neurons would make sense in the context of (Gibbs-) sampling

» Plasticity of the intrinsic excitability of neurons could implement the learning
of priors



Probabilistic inference and learning as an inspiration for the design
of a new generation of massively parallel computing devices
consisting of stochastic computational units

 The ,noise* of computing elements on the molecular level could
potentially become a useful resource for novel artificial computing
devices (as in the stochastic WTA-circuits that | have considered)

* Gibbs sampling in networks of spiking neurons is consistent with new
energy-efficient computer architectures based on event-based
asynchronous parallel processing

 New spike-based hardware (for example the hardware created in the
SYNAPSE project in the USA; or in the FACETS project of the EU)
could be used to create devices that ,think* and autonomously
generate theories for explaining their input streams
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