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The computational machinery of the cortex consists of a 
pizza-size 2-mm thick sheet of 

more or less generic „cortical microcircuits“

If the brain applies probabilistic inference, these cortical microcircuits are 
likely to provide a generically useful module for that. Of what nature could 
that module be ?



Local structure in generic cortical 
microcircuits

[Douglas and Martin, 2004]: 
„canonical microcircuit“ of the cortex



These generic computational modules would either have to be 
genetically encoded to carry out probabilistic inference, 
or automatically acquire this capability through plasticity

Experimental data suggest that 
these „soft WTA-circuits“ in the 
cortex are stochastic:

• Spontaneous activity

• Large trial-to-trial variability



Problem for understanding synaptic plasticity:
Synapses are very complicated devices, and their plasticity is 

only partially understood



STDP (= Spike-Timing-Dependent plasticity)
is currently the best understood experimental method 

for inducing synaptic plasticity

The key mechanism of STDP is the interaction of the incoming EPSP with 
the backpropagating action potential (BAP). The amplitude of the BAP is 
modulated by neuromodulators, as well as other inputs to the same neuron.
One assumes that the LTP- and LTD-parts of STDP are implemented by separate
molecular mechanisms.



STDP curves that were used for our computer 
experiments

These STDP curves are qualitatively similar to the data of [Sjöström et al., 2001]
for a rate of 20 Hz.



There are other kinds of use-dependent changes in 
neurons

Example:
Use-dependent adaptation of the intrinsic excitability of a neuron:  When a 
neuron is made to fire for a number of times, its excitability may increase 
(i.e., it fires with less excitatory input). 

We included a rule for the adaptation of intrinsic excitability in our model.



Result: STDP induces implicit generative models in 
the z-neurons of a stochastic-WTA circuit

Membrane potential of this neuron:

This exponential firing rule fits experimental 
data quite well [Jolivet et al., 2006]



Role of lateral inhibition in this context:
it implements the normalization



Demonstrating the possibility of this idea in a concrete example:
We encode in the spike input to the circuit

spatial patterns that are 
generated by a hidden generation process



Uncovering for you (but not for the circuit)
the hidden process which generates these input patterns:
Gaussians with different centers in 2D, with priors 0.1, …, 0.4

4 samples  
from the 4 
Gaussians                   

4 further samples, 
generated in the 
same way

each sample 
is transformed 
into a linear 
array

resulting spike input for 
these 4 samples 
(each pixel encoded by 2 
spike trains)



Output of the 4 z-neurons at the beginning, and after 
having seen a 20 s stream of such input spike trains 

(while STDP and excitability adaptation are active)
Weight vectors of the 4 z-
neurons (projected back into 
the 2D  input space)

Autonomous adaptation of 
neuronal excitability



Link between the STDP rule that was applied, 
and probability theory

The STDP rule 

causes each synaptic weight to converge (in fact, optimally fast) to the 
log conditional probability

log p( presyn. neuron has fired just before time t / postsyn. neuron fires at time t)

(These log probabilities are shifted into the positive range by adding a constant term.)



Result: This simple stochastic WTA-circuit learns through STDP  
(and adaptation of neuronal excitability) 

to carry out Bayesian inference

More precisely: it learns to implement Bayes Theorem

If the weights and the bias encode suitable log-probabilities, then the 
summation in this membrane potential implements multiplication of 
probabilities (in the log-domain). 
In particular: This can implement the multiplication in Bayes Theorem:

Resulting posterior distribution

where the membrane potential is defined by

We have



Analysis of the implicit generative 
model that can be implemented 

through the weights of this WTA circuit

Marginalization yields:

Rewriting this term as

When the inputs are generated by a mixture of monomials, and are encoded by 
spike trains as in the preceding example, these  are those values to which the 
weights converge under STDP:

log p( presyn. neuron has fired just before time t / postsyn. neuron fires at time t)

Joint probability that the k-th
output neuron fires for 
spike-input y :

where



More abstract analysis of the behaviour of STDP, even when the 
input distribution is not a mixture of multinomials:

STDP approximates stochastic online EM for fitting the implicit 
internal model (a mixture of multinomials) to the 
actual distribution of spike inputs to the circuit

STDP is applied only to the synapses of that z-neuron which fires. This application 
of STDP increases the chance, that this neuron would fire again for the same 
input, hence it corresponds to the M-step of EM (one can prove rigorously that it 
makes one step in the right direction). 

Each change of a synaptic weight modifies the resulting guesses for the latent 
variables. The E-step simply consists of applying for the next spike input y 
the WTA-network with these slightly changed weights. In other words, in lack of 
a teacher for supervised learning, the network uses the guess provided by the 
current state of the WTA-circuit as a substitute teacher. 

The general theory of EM (Expectation Maximization) guarantees that iterations of 
these E- and M-steps yields convergence to a (local) optimum of the objective 
function. 

We refer to this new unsupervised learning principle for networks of spiking 
neurons as SEM (spike-based EM)



The objective function that is minimized by this 
application of SEM through STDP:

The Kullback-Leibler divergence between the external distribution of 
spike inputs y  and the implicit generative model:

Each application of STDP makes a move in the direction of the M-step 
of an application of stochastic online EM for minimizing this KL-divergence.

[Nessler, Pfeiffer, Maass, NIPS 2009] ; 
journal version in preparation

Bernhard Nessler
Michael Pfeiffer



This unraveling of STDP as a spike-based EM approximation is 
not limited to mixtures of multinomials as internal models, 

and it does not require „perfect“ WTA circuits

• [Habenschuss et al, in preparation]

• [Büsing et al, in preparation]



This theoretical understanding of unsupervised learning with STDP 
makes it possible to generate networks of spiking neurons with quite 

impressive computational power and learning capability:
Application to a generic machine learning task (but WITHOUT 

supervision): MNIST dataset

These are 50 random samples from the 70 000 samples in the MNIST dataset.

50ms per digit

weights of one neuron



Resulting implicit generative models of 100 z-neurons
after exposing the circuit to 300 s of spike inputs, where a different 
sample of a handwritten digit is encoded in each window of 30 ms



Resulting spike output of the WTA-circuit 
before and after learning

The resulting sparser and more reproducable spike output corresponds to 
results on perceptual learning in neuroscience (which works without supervision).



Application to a more brain-like discrimination task:
Emergence of detectors for repeating 

spatio-temporal spike patterns through STDP
(after 20 s of unsupervised training)

Spike patterns: fixed Poisson spike trains at 15 Hz for 50 ms (colored);  they are always 
superimposed by  5  Hz noise Poisson spike trains (black)



These emerging detectors for spike-patterns 
automatically generalize to time-warped variations 

of these patterns



Experimentally testable predictions of those aspects of the 
STDP rule that are critical for these results, and the underlying 

theory that STDP approximates EM

1. Weight increases become exponentially smaller in dependence of the 
current weight size

2. Weight decreases are independent of the current weight size.



Experimental data confirm both of these two predictions

1. Weight increases become exponentially smaller in dependence of the current 
weight size

Theoretical prediction                Experimental data

2. Weight decreases are independent of the current weight size.

[Jacob et al., J. of Neurophys. ,2007]  report that  weight decreases of STDP 
are not correlated with the current weight size

Montgomery et al. 2001

Noise does not harm the effectiveness of 
the STDP rule

See similar data by [Liao et al., 1992],
[Bi and Poo, 1998], [Sjöström et al., 2001]



Outlook on ongoing work 
[Pecevski et al, in preparation]:

Networks of very similar neural circuit 
moduls can implement Gibbs sampling in 

arbitrary Bayesian network

Example:  
A simple (but non-trvial) 
Bayesian network



Design of local computing moduls for implementing 
Gibbs sampling

• We consider a Bayesian network B (directed acyclic graph) with discrete 
variables                              

where each xi node has a set of parents PA(xi)

• The conditional probability for sampling z conditioned on the other variables

where   



A generic neural network module can 
learn to represent this conditional distribution of  z

111111



Suitable STDP learning rules (applied to complete data 
samples) yield exponential fast convergence to the desired 

weight values (with regard to expected weight changes)



Computer test for a concrete Bayesian network:
It first learn the weights from complete samples by STDP, then 

generates samples from the learnt distribution

This reproduces quite well the original distribution:



Outlook

• This example suggests that we could consider brain activity as a 
possible implementation of Gibbs sampling (as suggested in 
Cognitive Science by Tenenbaum, Vul, and others)

• It opens the door to an analysis of neuronal dynamics and brain 
connectivity from a new perspective

• The brain may also have discovered more efficient sampling 
methods (for constrained distributions), that yield faster 
convergence to a stationary distribution



Conclusions of my talk

Generative versus discriminative learning:

• I have shown that generative models can emerge even without 
any explicit backwards propagation of internally generated 
patterns. This implicit form of generative models is less in 
conflict with data from neuroscience.

• These implicit generative models, that are encoded in synaptic 
weights (of forward connections) can provide the same 
theoretically predicted benefits as explicit generative models 
(including better generalization capability, see [Jordan and 
Ghahramani, 2006])



Probabilistic inference as a possible framework for understanding the 
organization of cortical computations:

• I have proposed a new understanding of the functional role of STDP as 
spike-based EM (SEM)

• This principle suggests that Bayesian computation modules are 
autonomously created in each WTA-circuit (that represents a posterior 
distribution)

• Networks of such Bayesian computation modules provide a new model for 
cortical computation on a probabilistic level

• This approach provides a functional explanation for the ubiquitous trial-to-
trial variability of neuronal responses to stimuli (and explain it as sampling 
from an internally generated posterior distributions)

• The mysterious recurrent connectivity structure of cortical networks of 
neurons would make sense in the context of (Gibbs-) sampling  

• Plasticity of the intrinsic excitability of neurons could implement the learning 
of priors



Probabilistic inference and learning as an inspiration for the design 
of a new generation of massively parallel computing devices 
consisting of stochastic computational units

• The „noise“ of computing elements on the molecular level could 
potentially become a useful resource for novel artificial computing 
devices (as in the stochastic WTA-circuits that I have considered)

• Gibbs sampling in networks of spiking neurons is consistent with new 
energy-efficient computer architectures based on event-based 
asynchronous parallel processing

• New spike-based hardware (for example the hardware created in the 
SYNAPSE project in the USA; or in the FACETS project of the EU)  
could be used to create devices that „think“ and autonomously 
generate theories for explaining their input streams

• .
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