

Macedonia: Facts & Numbers

- Rich viticulture and distinguished history of winemaking
- 27 500 hectares of vineyards that produce considerable quantities of highest quality grape
 - ▶ 65% belongs to wineries, 35% to individuals
 - ▶ 98 millions liters wine per year (150 million kilograms of grapes)
 - 88 wineries
- Main varieties grown
 - Vranec (red) and Smederevka (white

Trend of wine export

Year	2007	2008	2009
Exported Wine (million €)	17.4	17.7	19.6

 Vranec, Zilavka, Kartoshija and Temjanika are successfully penetrating the Western - European market

Trend of wine production: Towards quality

- Production of wine and the land used for vineyards has decreased over the last 20 years according to the EC (European Commission) reports
- A need for
 - Efficiency in vineyard capacity utilization
 - Stability in the grape growing process
 - Quality over quantity!
- Improving the wine manufacturing mechanisms
 - New equipment, automated systems...
- ♦ Improving the process of growing grapes
 - ▶ Optimization of the irrigation system ⇒ Efficiency
 - Prevention from grape diseases ⇒ Stability
 - ▶ Different conditions are required for different varieties ⇒ Quality

Precision Agriculture: Vineyards monitoring

- Precision agriculture ⇒ an emerging trend in the agricultural sector that includes implementing new technologies for
 - improvement of the crop production management and
 - agricultural decision making
- Precision agriculture in vineyards (particularly wireless sensor network technology) provides
 - continuous monitoring of the vineyards
 - enables in time notice delivery anytime and anywhere

- \$\footnote{\text{improves}}\$ the yield and quality of grapes
- decreases the costs and reduces the use of pesticides

Existing implementations and experiences

- Camalie Vineyards: Napa Valley
 - Camalie Networks and Crossbow technology, USA
 - irrigation management, frost protection and powdery mildew management
- VineSense: Chianti region of Tuscany, Italy
 - Netsense, Italy
 - irrigation control; downy mildew, powdery mildew and botrytis protection; water stress and plant physiology; thermal characterization of the new plants
- Climate Genie™: Napa Valley
 - Grape Networks, California, USA
 - monitoring water, temperature, humidity and light
- Agri-Sens: Sula Vineyard, Nasik, India
 - SPANN Lab, IIT Bombay, India
 - monitoring temperature, humidity, soil moisture and
- Precise Water Monitoring
 - Fruition Sciences, California, USA
 - irrigation optimization based on sap flow

 WSN-SME: ProSense workshop, Ljubljana, May 19-21, 2010

Experiences: Camalie Vineyards

- Area of coverage: 1.58 ha
- Divided in 10 regions on the basis of the combination of vineyard, the soil type, exposition of sun and the

Different quantities of water	er
supply are used in distinct	
regions	(R)

,	climata				
(4)	Years	Crop	Crop - total		
(1)		[t/ha]	[ton]		
	2001-2004	0.63	1		
(2)	2005	2.53	4		
	2006	6.00	8.4		
	2007	11.5	18.2		
	2008	6.13	9.68		
	2009	11.1	17.55		

Years	Rain [cm]	Plants [number]	Water supply [thousand liters]
2002	/	342	70
2003	103	644	1091
2004	65.8	4200	819
2005	94.5	4200	677
2006	97.5	4200	726
2007	46.2	4200	573
2008	58.2	4200	684

- 1 Sensor network is installed along with 3000 plants
- 2 Different conditions are considered for different grape types

Distributed and Intelligent system for monitoring vIneyards with Sensor networks

Facilitating better vineyard management with:

Sensors

- sensor system
 - ⇒observing the vineyards specific conditions
- visualization system
 - ⇒monitoring the quality and vitality of the grapes in a vineyard
 - ⇒ the need of water supply
 - ⇒ the need of applying pesticides
- alarm system
 - providing alarm messages if some conditions require urgent reaction
- thus improving the yield and quality of the crop

Transceivers

Data Center

User Interface

DIONIS: Sensor system

Sensor network features 24/7 observation of the vineyard specific conditions that can affect the grapes growing process

Irrigation optimization

soil moisture, sap flow, rainfall, temperature, humidity

Disease prevention

leaf wetness, temperature, humidity, rainfall, UV radiation,

Drought and frost prediction

temperature and air humidity

Soil quality

chemical composition of the soil

Temperature, humidity

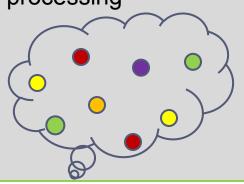
Soil moisture

Leaf water potential

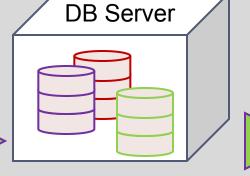
Solar radiation

Sap flow

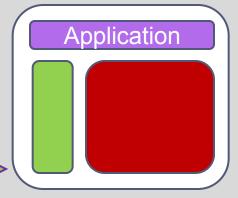
DIONIS: Visualization system (1/2)


- Web Application provides remote vineyard monitoring
 - the overall data flow of the Web Application:

Mesh Tier


Server Tier

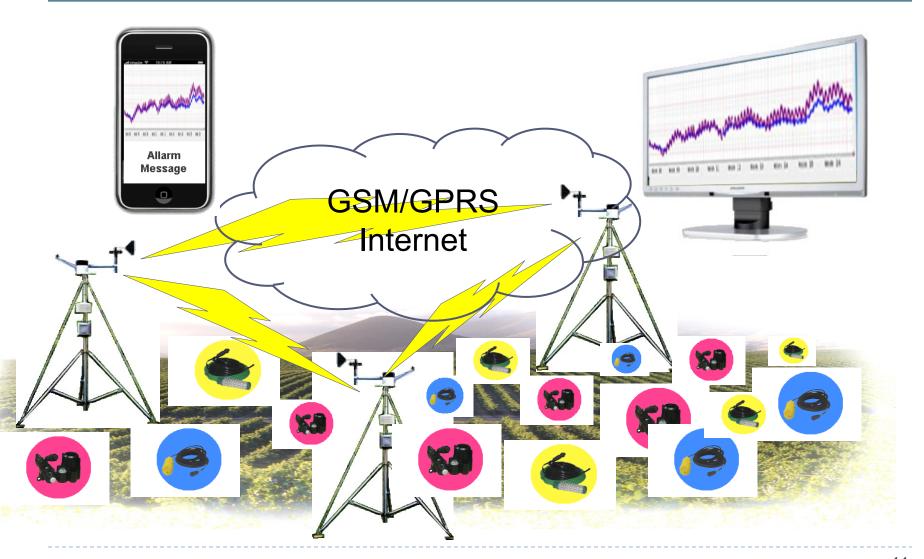
Client Tier


Data is generated by the sensors mounted in the vineyard, then transmitted for further processing

Data is collected, filtered and classified in a Database for further analysis

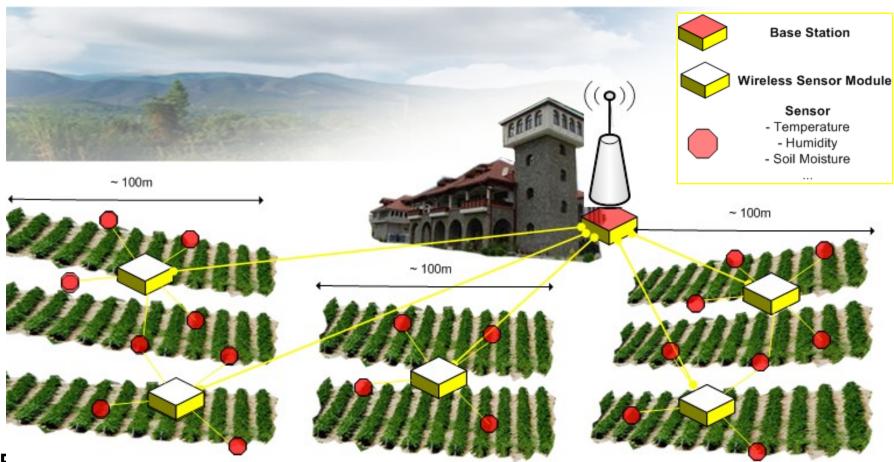
Data is fetched and presented in a user-defined manner

DIONIS: Visualization system (2/2)


- Main features of the application interface
 - Graphical representation of the processed data, as well of the vineyard itself
 - Configurable Graphs daily, weekly, monthly graphs that can be configured

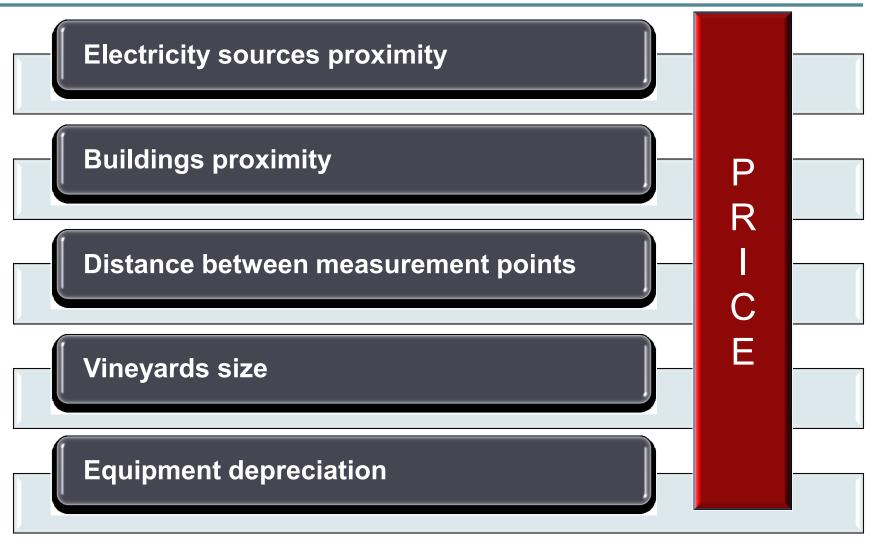
Alarm messages – accordingly to the configured parameters Topographic View Alarm messages -**Configurable Graphs** can be configured of the vineyard and for data analyzes, data and sent to various comparison & planning the mounted devices sensors App listing SMS Message e-Mail Other ways

DIONIS: Process of implementation



DIONIS Beneficiary:

Private winery - Popova Kula


f opova raia willery. www.popovaraia.com.inr

CNN news: Creating Napa Valley in Macedonia

Implementation constraints?

Conclusion (1/2)

- Vineyards monitoring is an invaluable factor in increasing the production and quality of grapes cultivation
- Sensor networks are the solution of the future
 - Application in many diverse areas: greenhouses, floriculture, fruit growing etc.
 - Implementation in the most successful wineries in France, California, South Africa etc.
- The implementation of the sensor networks in vineyards means:
 - 24h monitoring of the vineyard micro-climate conditions
 - Remote access to the vineyard monitoring system
 - Alarm notifications

Conclusion (2/2)

- DIONIS project
 - application of sensor networks in vineyards monitoring

- the ICT knowledge as a support in agriculture
- cooperation between academia and SME
- DIONIS implementation
 - Popova Kula winery (first phase of DIONIS implementation)
 - Extending the project for
 - monitoring and automation of the wine cellars, wineries
 and wine production processes
 - implementing diverse sensor network solutions ...

WinGroup & ECS

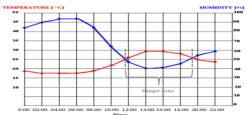
- WiN Group (Wireless Networks Group) is a research activity oriented group, specializing in wireless and mobile networking
 - Founded in September 2007 as part of the FEEIT Skopje
 - The group participates in many national and international (EU FP7) projects: ProSense, ARAGORN, RIWCoS, QUASAR, FARAMIR, etc.
 - http://wingroup.feit.ukim.edu.mk
- The relevant experience in the field of Wireless Sensor Network is gained in EU FP7 project ProSense
 - In the scope of the project, sensor network equipment is purchased and diverse applications are developed
 - http://prosense.feit.ukim.edu.mk
- ECS (EuroComputer Systems)
 - Established in 1991
 - One of the most successful IT companies in the Republic of Macedonia participating in a number of system integration projects
 - ---http://ecs.com.mk

About us...

WiNGroup & ECS

ECS

Testbed platforms



Equipment & GUI

http://prosense.feit.ukim.edu.

FEEIT-ECS Collaboration agreement

Thank you for your attention

Contacts:

WinGroup

http://wingroup.feit.ukim.edu.mk

Group Leader - Prof. Liljana Gavrilovska General Manager - Vasko Pavloski liljana@feit.ukim.edu.mk pavloski@ecs.com.mk

ECS

http://ecs.com.mk